Targeting the genetic and immunological drivers of cancer
Safe Harbor Statement

This presentation contains certain forward-looking statements regarding the business of Mirati Therapeutics, Inc. (“Mirati”). Any statement describing Mirati’s goals, expectations, financial or other projections, intentions or beliefs, development plans and the commercial potential of Mirati’s drug development pipeline, including without limitation MRTX849, sitravatinib and MRTX1133, is a forward-looking statement and should be considered an at-risk statement. Such statements are subject to risks and uncertainties, particularly those challenges inherent in the process of discovering, developing and commercialization of new drug products that are safe and effective for use as human therapeutics, and in the endeavor of building a business around such drugs.

Mirati’s forward-looking statements also involve assumptions that, if they never materialize or prove correct, could cause its results to differ materially from those expressed or implied by such forward-looking statements. Although Mirati’s forward-looking statements reflect the good faith judgment of its management, these statements are based only on facts and factors currently known by Mirati. As a result, you are cautioned not to rely on these forward-looking statements. These and other risks concerning Mirati’s programs are described in additional detail in Mirati’s quarterly reports on Form 10-Q and annual reports on Form 10-K, which are on file with the U.S. Securities and Exchange Commission (the “SEC”) available at the SEC’s Internet site (www.sec.gov). Mirati assumes no obligation to update the forward-looking statements, or to update the reasons why actual results could differ from those projected in the forward-looking statements, except as required by law.
Mirati is Taking a Bold Approach to Develop Novel Oncology Therapies, Including Two Registration-Enabling Programs in Large NSCLC Patient Populations

Meaningful operational and commercial synergies across our portfolio, particularly in NSCLC

IO Resistance

- Sitravatinib inhibitor of TAM and VEGFR2

 Preliminary P2 data in combo with PD-1 implies doubling of median OS vs. SoC supporting SAPPHIRE P3 approach in NSCLC*

KRAS Selective Inhibition

- **MRTX849**
 - G12C selective inhibitor

 Compelling early efficacy and favorable tolerability with broad development in both monotherapy and combinations

- **MRTX1133**
 - G12D selective inhibitor

 Potential first-in-class G12D inhibitor advancing through IND-enabling studies

NSCLC: non-small cell lung cancer; **CRC:** colorectal cancer; **IO:** immuno-oncology; **IND:** investigational new drug; **OS:** overall survival; **SoC:** standard of care

*As of the data cut-off of January 30, 2020 from P2 single-arm study: Preliminary median OS of 15.6 months for the PCB cohort (n=87). Preliminary median OS of 18.1 months for the subset of PCB patients (n = 73 of 87) who received the combination as either 2nd or 3rd line of therapy after progressing on treatment with a checkpoint inhibitor, which is a patient cohort consistent with the inclusion criteria for the ongoing SAPPHIRE Phase 3 clinical trial.

Continued progress and advancement across our targeted oncology research platform

$646 million in cash and cash equivalents as of 6/30/20, providing approximately two-year runway
Robust Pipeline Spans Multiple Targets & Tumor Types with Near-Term Catalysts

<table>
<thead>
<tr>
<th>Compound</th>
<th>Indication</th>
<th>Lead Optimization</th>
<th>IND-enabling</th>
<th>Phase 1/1b</th>
<th>Phase 2</th>
<th>Phase 3</th>
<th>Near-Term Catalysts</th>
</tr>
</thead>
<tbody>
<tr>
<td>MRTX849</td>
<td>NSCLC, CRC, Pancreatic</td>
<td>KRYS201AL - Phase 1/2 in 2nd Line +</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Update at triple meeting in Oct 2020 in monotherapy NSCLC & CRC</td>
</tr>
<tr>
<td>MRTX849 + pembrolizumab (PD-1)</td>
<td>NSCLC</td>
<td>KRYS201AL - 1st Line</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Initiated Q1 2020; Initial data expected in 2021</td>
</tr>
<tr>
<td>MRTX849 + afatinib (pan-EGFR)</td>
<td>NSCLC</td>
<td>KRYS201AL - 2nd Line</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Initiated in Q3 2020</td>
</tr>
<tr>
<td>MRTX849 + cetuximab (EGFR)</td>
<td>CRC</td>
<td>KRYS201AL - 2nd Line</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Initiated Q1 2020; Initial data expected in 2021</td>
</tr>
<tr>
<td>MRTX849 + palbociclib (CDK4/6)</td>
<td>NSCLC</td>
<td>2nd Line (separate protocol)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Initiate 2H 2020</td>
</tr>
<tr>
<td>MRTX849 + TNO155 (SHP2)</td>
<td>NSCLC, CRC</td>
<td>2nd Line (separate protocol)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Initiated Q2 2020; Initial data expected in 2021</td>
</tr>
<tr>
<td>MRTX1133</td>
<td>Pancreatic, CRC, NSCLC, Endometrial</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>IND in 1H 2021</td>
</tr>
</tbody>
</table>

Sitravinib
- **Multi Kinase Inhibitor**
- **Indication**
 - NSCLC
 - Bladder, RCC, HNSCC
 - NSCLC, HCC, RCC, OC & Gastric
- **Lead Optimization**
 - SAPHIRE - Phase 3 in 2nd / 3rd Line Checkpoint Refractory
- **Near-Term Catalysts**
 - P3 Interim OS Analysis: YE 2021
 - Additional data in 2021

Discovery Programs
- **Synthetic Lethality**
 - Solid Tumors
- **RAS Signaling Modifier**
 - Solid Tumors
- **Mutant KRAS Inhibitor**
 - Solid Tumors

NSCLC: non-small cell lung cancer; **CRC:** colorectal cancer; **RCC:** renal cell cancer; **HCC:** hepatocellular cancer; **OC:** ovarian cancer; **HNSCC:** head and neck squamous cell cancer; **IND:** Investigational New Drug application

1. Tislelizumab is BeiGene’s anti PD-1. BeiGene is currently running a subset of combination studies of sitravinib + tislelizumab in Asia for multiple solid tumor indications. BeiGene has Asian commercialization rights (ex-Japan) for sitravinib as part of our development and commercialization agreement (Jan. 2018) and is responsible for additional data disclosures.
Targeted Oncology

MRTX849: KRAS G12C Selective Inhibitor
KRAS is the Most Frequently Mutated Gene in Human Cancer

KRAS Signaling
A key regulator of cell growth and survival

Abnormal KRAS Signaling
Mutated KRAS activity is uncontrolled
KRAS G12C Mutations Occur Frequently in Multiple Tumor Types

Prevalent in Tumors with High Unmet Need

KRAS G12C Mutational Frequencies

- **NSCLC (adenocarcinoma)**: 14% (~44,000)
- **Colorectal**: 3-4% (~20,000)
- **Pancreatic**: 2% (~4,000)

Large Patient Population

- **US and EU Patients**: ~70,000
 - KRAS G12C: ~25,000
 - ALK: ~13,000
 - RET: ~2,000

2. Mirati estimates based on epidemiology data reported in Globocan 2022 (accessed 2019) and frequencies by mutation; RET estimate does not include thyroid cancer. Rounded to the nearest 1,000.
MRTX849: Designed to Fully Inhibit Mutant KRAS G12C for Full Dose Interval

Long Half Life

Recycling of the KRAS protein (half-life approximately 24h) can reactivate signaling in the absence of drug\(^2\)

Long half-life of MRTX849 ensures the pathway is maximally inhibited throughout the entire dosing interval

Human Half Life

>24 hours\(^1\)

Extensive Tissue Distribution

Maximize systemic exposure for duration of dosing

Extensive volume of tissue distribution ensures optimal target coverage throughout the dosing interval

Estimated Human Volume of Distribution

(>10 L/Kg\(^3\))

1. Data Presented at 2019 AACR-NCI-EORTC Conference
3. Estimated from nonclinical data and PBPK modeling
Initial Data from Phase 1/1b Clinical Trial of MRTX849 Show Favorable Overall Tolerability

Patient Incidence of Treatment Related AEs (>10%)

<table>
<thead>
<tr>
<th>Treatment-Related AEs (N=17)</th>
<th>Grade 1 n</th>
<th>Grade 2 n</th>
<th>Grade 3 n</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diarrhea</td>
<td>6</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>Nausea</td>
<td>8</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>AST Increased</td>
<td>5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Vomiting</td>
<td>4</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Fatigue</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>ALT Increased</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Creatinine Increased</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Abdominal Distension</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Abdominal Pain</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Alkaline Phosphatase Increased</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Treatment-Related AEs (N=17)</th>
<th>Grade 1 n</th>
<th>Grade 2 n</th>
<th>Grade 3 n</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anemia</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Decreased Appetite</td>
<td>2</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Dehydration</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Dry Mouth</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Dysgeusia</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Dyspnea</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>QT Prolonged</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Hypomagnesemia</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Rash</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Considerations
Data Presented at 2019 AACR-NCI-EORTC Conference
Data cut-off date: 11-Oct-2019
Dose limiting toxicities observed: 1200 QD capsule burden intolerable (12 capsules); 600 mg BID grade 3/4 amylase/lipase increase, isolated enzyme elevation without pancreatitis (only treatment related Grade 4 AE observed)

AE: adverse events; AST: aspartate aminotransferase; ALT: alanine aminotransferase
Initial Data from Phase 1/1b Clinical Trial of MRTX849 at 600mg BID Demonstrate Efficacy and Tolerability

600mg BID Dose Patients: Best Tumor Response* (N=9)

- **Appendiceal (N=2)**
 - SD: 0%
 - PR: -1%

- **CRC (N=2)**
 - SD: 1%

- **NSCLC (N=5)**
 - SD: -2%
 - PR: -21%
 - PR: -36%
 - PR: -43%
 - PR: -62%

Data Presented at 2019 AACR-NCI-EORTC Conference

* Based on local radiographic scans every 6 weeks using RECIST 1.1 criteria
‡ Confirmed response (1st scan: -37%, 2nd scan: -47%)
§ Patient had confirmed PR post data cut-off (1st scan: -33%, 2nd scan: -43%)
† Response yet to be confirmed (on study but only 1 scan)
@ Patient on study (One off study patient withdrew consent due to travel constraints)

Evaluable Patients at 600mg BID

<table>
<thead>
<tr>
<th>Disease</th>
<th>ORR</th>
<th>DCR</th>
</tr>
</thead>
<tbody>
<tr>
<td>NSCLC</td>
<td>3/5</td>
<td>5/5</td>
</tr>
<tr>
<td>CRC</td>
<td>1/2</td>
<td>2/2</td>
</tr>
<tr>
<td>Append</td>
<td>0/2</td>
<td>2/2</td>
</tr>
</tbody>
</table>

BID: twice a day dosing
ORR: overall response rate
DCR: disease control rate
(SD+PR at 6 weeks)
SD: stable disease
PR: partial response
NSCLC: non-small cell lung cancer
CRC: colorectal cancer
Append: appendiceal cancer

Data cut-off date: 11-Oct-2019
Initial Phase 1/1b MRTX849 Duration Clinical Data Encouraging in KRAS G12C+ Tumors

All Evaluable Patients: Duration of Treatment (N=12)

Dose: a. 150 mg QD; b. 300 mg QD; c. 600 mg QD; all other patients received 600 mg BID
Data cut-off date: 11-Oct-2019
NSCLC: non-small cell lung cancer; CRC: colorectal cancer
MRTX849 Monotherapy Development Approach

Monotherapy has potential for accelerated approval and quick path to approval

- **NSCLC**
 - **Approach**
 - Enrollment in expansion cohort complete
 - Enrollment in P2 registration-enabling 100-120 patient cohort complete in Q3 2020
 - **Clinical/Regulatory Hurdle**
 - Accelerated approval pathway being pursued
 - ORR >30%, DOR median 6 months

- **CRC**
 - **Approach**
 - Enrollment in expansion cohort complete
 - Confirming potential monotherapy activity
 - **Clinical/Regulatory Hurdle**
 - Potential for single arm accelerated approval pathway
 - ORR >20%, DOR median 4 months

- **Pancreatic and Others**
 - **Approach**
 - Enrolling expansion cohort
 - Confirming potential monotherapy activity
 - **Clinical/Regulatory Hurdle**
 - Potential for pancreatic or tumor agnostic approval pathway

NSCLC: non-small cell lung cancer; **CRC:** colorectal cancer; **ORR:** overall response rate; **DOR:** duration of response
MRTX849 Combination Development Approach
Combination therapy will be key to realizing the full value of KRAS G12C

MRTX849 KRAS G12C Inhibitor

NSCLC
MRTX849 + PD-1 (pembrolizumab)
- Preclinical data demonstrate durable complete responses
- Initiated in Q1 2020
- Path to 1st line

MRTX849 + EGFR (cetuximab)
- Preclinical combo data demonstrate effectiveness
- Initiated in Q1 2020
- Positive results in EGFR combo with bRAF/MEK (Beacon trial) support clinical plan

MRTX849 + pan-EGFR Inhibitor (afatinib)
- Preclinical combination data support approach
- Combination with afatinib initiated in Q3 2020

NSCLC & CRC
MRTX849 + SHP2 Inhibitor (TNO155 from Novartis)
- Strong mechanistic rationale supported by preclinical data
- Initiated in Q2 2020

NSCLC
MRTX849 + CDK 4/6 Inhibitor (palbociclib)
- Preclinical combination data support approach
- Combination with palbociclib to initiate in 2H 2020

NSCLC: non-small cell lung cancer; CRC: colorectal cancer; ORR: overall response rate; DOR: duration of response
Preliminary results from MRTX849 testing in CT26 Clone E3 G12C syngeneic mouse model

1. KRAS G12C NSCLC tumors have elevated levels of tumor mutational burden and PD-L1 expression
2. MRTX849 treatment demonstrated an adaptive immune response via recruitment of CD4+ and CD8+ T cells in KRAS G12C positive mutant tumors
3. MRTX849 combined with a PD-1 inhibitor may optimize efficacy in first line treatment

1. Preliminary results from MRTX849 testing in CT26 Clone E3 G12C syngeneic mouse model

NSCLC: non-small cell lung cancer; CRC: colorectal cancer; ORR: overall response rate; DOR: duration of response
MRTX849 with EGFR and SHP2 Combinations: Optimized to Combat RAS Pathway Reactivation

1. LU11692 xenograft model (MRTX849 100mg/kg; afatinib 12.5mg/kg)
2. KYSE-410 xenograft model (MRTX849 100mg/kg; RMC-4550 30mg/kg)

1. LU11692 xenograft model (MRTX849 100mg/kg; afatinib 12.5mg/kg)
2. KYSE-410 xenograft model (MRTX849 100mg/kg; RMC-4550 30mg/kg)

MRTX849 and EGFR Inhibitor

- Vehicle
- afatinib (pan-EGFR)
- MRTX849
- MRTX849 + afatinib (pan-EGFR)

MRTX849 and SHP2 Inhibitor

- Vehicle
- MRTX849
- MRTX849 + RMC-4550 (SHP2)

1. LU11692 xenograft model (MRTX849 100mg/kg; afatinib 12.5mg/kg)
2. KYSE-410 xenograft model (MRTX849 100mg/kg; RMC-4550 30mg/kg)
MRTX849 Summary: A Potential Best-in-Class KRAS G12C Selective Inhibitor

Clinical Attributes of MRTX849

- **Long half life:** >24-hour human half life maintains full inhibition of KRAS G12C\(^1\)
- **Volume of Distribution:** Projected Human Volume of Distribution >10 L/Kg

Significant Commercial Potential

Large Patient Population: KRAS G12C incidence is ~70,000 in the U.S. and EU\(^2\)

Large Commercial Opportunity: Addressable Patient population is ~7X larger than the $1.4B ALK market\(^3\)

Initial Phase 1/1b Clinical Data Demonstrate Efficacy & Tolerability

<table>
<thead>
<tr>
<th>Evaluable Patients at 600mg BID</th>
</tr>
</thead>
<tbody>
<tr>
<td>NSCLC</td>
</tr>
<tr>
<td>ORR: 3/5</td>
</tr>
<tr>
<td>DCR: 5/5</td>
</tr>
<tr>
<td>CRC</td>
</tr>
<tr>
<td>ORR: 1/2</td>
</tr>
<tr>
<td>DCR: 2/2</td>
</tr>
<tr>
<td>Append</td>
</tr>
<tr>
<td>ORR: 0/2</td>
</tr>
<tr>
<td>DCR: 2/2</td>
</tr>
</tbody>
</table>

Data cut-off date: 11-Oct-2019

Potential Registration Pathways

Fast Track Designation in 2\(^{nd}\)/3\(^{rd}\) line NSCLC monotherapy

Monotherapy: Phase 2 registration enabling trial (NSCLC) will complete enrollment in Q3 2020

Combinations: POC cohorts in PD-1 in NSCLC and EGFR in CRC cohorts initiated in Q1 2020; other investigational combinations also initiated

1. Data Presented at 2019 AACR-NCI-EORTC Conference
2. Mirati estimates based on epidemiology data reported in Globocan 2022 (accessed 2019) and frequencies by mutation
3. ALK market: 2018 worldwide sales

NSCLC: non-small cell lung cancer; CRC: colorectal cancer; Append: appendiceal; ORR: overall response rate; DCR: disease control rate; POC: proof of concept
Targeted Oncology

MRTX1133: KRAS G12D Selective Inhibitor
KRAS G12D: Significant Patient Population with High Unmet Need

Frequency of G1C versus G1D by Tumor Type

1. **KRAS G12C**
 - NSCLC adenocarcinoma: ~44,000 (14%)
 - Colorectal: ~20,000 (3-4%)
 - Pancreatic: ~4,000 (2%)

2. **KRAS G12D**
 - Pancreatic: ~70,000 (36%)
 - Colorectal: ~80,000 (12%)
 - Endometrial: ~15,000 (6%)
 - NSCLC adenocarcinoma: ~13,000 (4%)

Total US & EU Patients

Large Patient Population

US and EU Patients

- **KRAS G12D**: ~180,000
- **KRAS G12C**: ~70,000
- **ALK**: ~25,000
- **RET**: ~13,000
- **TRK**: ~2,000

NSCLC = non-small cell lung cancer; **CRC** = colorectal cancer

3. Mirati estimates based on epidemiology data reported in Globocan 2022 (accessed 2019) and frequencies by mutation; RET estimate does not include thyroid cancer. Rounded to the nearest 100.
MRTX1133: Potential First-in-Class G12D Selective Inhibitor

POTENCY
Sub-nanomolar to single digit nanomolar potency across multiple cellular models of KRAS G12D

SELECTIVITY
~1000-fold selectivity for wild-type KRAS

ANTI-TUMOR ACTIVITY
Demonstrated clear tumor regression in G12D positive non-clinical cancer models, including pancreatic adenocarcinoma xenograft models

STATUS & NEXT STEPS
- Lead clinical candidate identified
- Dose-range finding toxicology studies complete
- Advancing to GLP toxicology studies
- IND filing in 1H 2021
Sitravatinib + Checkpoint Inhibitors
Sitravatinib Inhibits TAM (TYRO3, AXL and MER), VEGFR2, and KIT Receptors and May Restore Immune Response

Rationale for Targeting TAM & Split RTKs to Enhance Immune Response to Checkpoint Inhibitors

Targeting TAM:
- Targeting MERTK & AXL shifts tumor associated macrophage (TAM) type to M1
- M1 macrophages secrete cytokines that enhance immune response (IL-12, TNF)

Targeting Split RTKs:
- Targeting VEGFR2 reduces Tregs & MDSCs
- Targeting KIT also depletes MDSCs
- Releases brakes for expansion of CD8+ T cells via PD-1 inhibition

Both TAM & Split RTKs cooperate to:
- Increase dendritic cell maturity & antigen presentation capacity
- Increase NK cell response
- Increase T cell expansion & trafficking into tumors

2. Garton et al., Anti-KIT Monoclonal Antibody Treatment Enhances the Antitumor Activity of Immune Checkpoint Inhibitors by Reversing Tumor-Induced Immunosuppression. Mol Cancer Ther, 2017. 16(4)
Compelling Phase 2 Results Support and Inform SAPPHERE Phase 3 Trial Design

- Encouraging updated Overall Survival (OS) data from ongoing Phase 2 clinical trial
 - Sitravatinib + nivolumab in checkpoint refractory NSCLC

- Preliminary median OS of 18.1 months in subset of Prior Clinical Benefit (PCB) patients who received the combination as either 2nd or 3rd line therapy after progressing on treatment with checkpoint inhibitor
 - Patient cohort consistent with the inclusion criteria for the ongoing Phase 3 SAPPHERE clinical trial

- Preliminary median OS of 15.6 months in full PCB cohort

- Potential to establish sitravatinib + nivolumab as new standard of care after checkpoint inhibitor failure
 - >2nd line NSCLC U.S. & EU Populations (circa 2020): over 100,000 patients in total with ~70,000 being non-squamous

OS: overall survival; NSCLC: non-small cell lung cancer
1. MRTX-500 Phase 2 trial: full Prior Benefit Cohort (PCB) (n=87), data cut-off 30 Jan-2020. Patients with PCB on a checkpoint inhibitor as part of their last treatment regimen prior to enrollment. PCB is defined as either complete response, partial response or stable disease for ≥12 weeks. Subset of PCB patients (n=73) who received the combination as either 2nd or 3rd line of therapy after progressing on treatment with a checkpoint inhibitor.

Historical Data Points for Advanced NSCLC
2nd Line or Subsequent Therapy

- MRTX-500 preliminary median OS in sitravatinib + nivolumab

2nd Line or Subsequent Therapy

![Historical Data Points for Advanced NSCLC](image)

- docetaxel (Avg. OS from CheckMate, KEYNOTE & OAK Trials)
- MRTX-500 preliminary median OS in sitravatinib + nivolumab

18.1
15.6

9.4
8.5
9.6

MONTHS

0 2 4 6 8 10 12 14 16 18 20

- Data presented are from the CheckMate 057, KEYNOTE 010 and OAK studies and do not reflect results that might have been obtained from head-to-head studies. Results from Mirati’s on-going Phase 3 SAPPHERE trial comparing sitravatinib + nivolumab to docetaxel may differ materially from prior studies presented.
SAPPHIRE: Phase 3 Trial in 2nd / 3rd Line NSCLC

Potential to establish sitravatinib + nivolumab as new standard of care after checkpoint inhibitor failure

Key Inclusion/Exclusion Criteria:

- Advanced, Non-Squamous NSCLC
- 2nd / 3rd line: progression on or following PD-(L)1 inhibitor in combination or following chemotherapy*
- Patients must have remained on prior PD-(L)1 therapy for at least 4 months
- Excludes known driver mutations

Endpoints:

- Primary: OS
- Secondary: PFS, duration of response, safety, tolerability
- Interim Analysis: OS (242 events)

* This has been amended to include both 2nd and 3rd line patients who have progressed following checkpoint inhibitor therapy and to add OS as an interim analysis endpoint.

ORR: overall response rate; DOR: duration of response; OS: overall survival; PFS: progression-free survival; NSCLC: non-small cell lung cancer
Sitravatinib has Potential Across Multiple Tumor Types

NSCLC
- **Phase 1/1b**
 - 2nd / 3rd line NSCLC (SAPPHIRE) checkpoint refractory
 - sitravatinib + nivolumab vs. docetaxel
- **Phase 2**
- **Phase 3**
- **Milestones**
 - Interim Analysis YE 2021

Bladder & RCC
- **Phase 1/1b**
 - 2nd / 3rd line Bladder checkpoint refractory
 - sitravatinib + nivolumab
- **Phase 2**
 - 2nd / 3rd line RCC checkpoint naïve
 - sitravatinib + nivolumab
- **Phase 3**
- **Milestones**
 - Additional Data 2020 & 2021

HCC, RCC and Ovarian
- **Phase 1/1b**
 - 1st line NSCLC checkpoint naïve & refractory
 - sitravatinib + tislelizumab
- **Phase 2**
 - 1st line HCC checkpoint naïve
 - sitravatinib + tislelizumab; sitravatinib alone
 - 1st / 2nd line RCC checkpoint naïve & refractory
 - sitravatinib + tislelizumab
- **Phase 3**
 - Ovarian cancer following platinum
 - sitravatinib + tislelizumab
 - 2nd / 3rd line Gastric following chemotherapy
 - sitravatinib + tislelizumab
- **Milestones**
 - Additional Data 2021
Select Company Financials

<table>
<thead>
<tr>
<th>NASDAQ</th>
<th>MRTX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cash as of June 30, 2020*</td>
<td>$645.7M</td>
</tr>
<tr>
<td>Shares outstanding as of June 30, 2020</td>
<td>53.6M</td>
</tr>
<tr>
<td>Q2 2020: Operating Expenses</td>
<td>$84.9M</td>
</tr>
<tr>
<td>Q2 2020: Operating Expenses net of stock-based compensation*</td>
<td>$64.1M</td>
</tr>
</tbody>
</table>

* This amount is comprised of cash, cash equivalents and short-term investments.
** Shares outstanding as of June 30, 2020 includes 44.5 million shares of common stock outstanding and pre-funded warrants to purchase a total of 9.1 million shares of common stock. The pre-funded warrants have a per share exercise price of $0.001.
***Amount disclosed is calculated as total Q2 2020 operating expense ($84.9M) less Q2 2020 stock-based compensation expense ($20.8M).
Robust Pipeline Spans Multiple Targets & Tumor Types with Near-Term Catalysts

<table>
<thead>
<tr>
<th>Compound</th>
<th>Indication</th>
<th>Lead Optimization</th>
<th>IND-enabling</th>
<th>Phase 1/1b</th>
<th>Phase 2</th>
<th>Phase 3</th>
<th>Near-Term Catalysts</th>
</tr>
</thead>
<tbody>
<tr>
<td>MRTX849 monotherapy</td>
<td>NSCLC, CRC, Pancreatic</td>
<td>MRTX849 + pembrolizumab (PD-1)</td>
<td>KRYS849 - Phase 1/2 in 2nd Line</td>
<td>Initiated Q2 2020; Initial data expected in 2021</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MRTX849 afatinib (pan-EGFR)</td>
<td>NSCLC</td>
<td>MRTX849 + cetuximab (EGFR)</td>
<td>KRYS849 - 2nd Line</td>
<td>Initiated Q1 2020; Initial data expected in 2021</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MRTX849 palbociclib (CDK4/6)</td>
<td>NSCLC</td>
<td>MRTX849 + TNO155 (SHP2)</td>
<td>KRYS849 - 2nd Line (separate protocol)</td>
<td>Initiated Q2 2020; Initial data expected in 2021</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MRTX1133 Pancreatic, CRC, NSCLC, Endometrial</td>
<td>MRTX1133 Pancreatic, CRC, NSCLC, Endometrial</td>
<td>MRTX849 + palbociclib (CDK4/6)</td>
<td>KRYS849 - 2nd Line (separate protocol)</td>
<td>IND in 1H 2021</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sitravatinib</td>
<td>NSCLC</td>
<td>Sitravatinib + PD-1</td>
<td>MRTX849 + pembrolizumab (PD-1)</td>
<td>P3 Interim OS Analysis: YE 2021</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bladder, RCC, HNSCC</td>
<td>Mirati-Sponsored Studies / ISTs</td>
<td>MRTX849 + pembrolizumab (PD-1)</td>
<td>Additional data in 2021</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>NSCLC, HCC, RCC, OC & Gastric</td>
<td>Mirati-Sponsored Studies / ISTs</td>
<td>MRTX849 + pembrolizumab (PD-1)</td>
<td>Additional data in 2021</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- 1. Tislelizumab is BeiGene’s anti PD-1. BeiGene is currently running a subset of combination studies of sitravatinib + tislelizumab in Asia for multiple solid tumor indications. BeiGene has Asian commercialization rights (ex-Japan) for sitravatinib as part of our development and commercialization agreement (Jan. 2018) and is responsible for additional data disclosures.
Targeting the genetic and immunological drivers of cancer