TECHNICAL REPORT
AND UPDATED RESOURCE ESTIMATE
ON THE
SNOWFIELD PROPERTY
SKEENA MINING DIVISION
BRITISH COLUMBIA, CANADA
LATITUDE 56° 31’ 5” N by LONGITUDE 130° 12’ 18” W
For
PRETIUM RESOURCES INC.
By
P&E Mining Consultants Inc.

NI 43-101 & 43-101F1
TECHNICAL REPORT
Ms. Tracy Armstrong, P.Geo
Mr. Fred Brown, Pr.Sc.Nat.
Mr. Eugene Puritch, P.Eng.
P&E Mining Consultants Inc
Report No. 206
Effective Date: February 18, 2011
Signing Date: March 4, 2011
IMPORTANT NOTICE

This report was prepared as a National Instrument 43-101 Technical Report, in accordance with Form 43-101F1, for Pretium Resources Inc. (“Pretivm”) by P&E Mining Consultants Inc (“P&E”). The quality of information, conclusions and estimates contained herein is consistent with the level of effort involved in P&E’s services and based on: i) information available at the time of preparation, ii) data supplied by outside sources, and iii) the assumptions, conditions, and qualifications set forth in this report. This report is intended to be used by Pretivm, subject to the terms and conditions of its contract with P&E. This contract permits Pretivm to file this report as a Technical Report with Canadian Securities Regulatory Authorities pursuant to National Instrument 43-101, Standards of Disclosure for Mineral Projects. Any other use of this report by any third party is at that party’s sole risk.
Table of Contents

1.0 INTRODUCTION AND TERMS OF REFERENCE ... 1
 1.1 TERMS OF REFERENCE .. 1
 1.2 SOURCES OF INFORMATION .. 1
 1.3 UNITS AND CURRENCY ... 2
 1.4 GLOSSARY AND ABBREVIATION OF TERMS .. 2
2.0 RELIANCE ON OTHER EXPERTS .. 4
3.0 PROPERTY DESCRIPTION AND TENURE .. 5
 3.1 DESCRIPTION AND TENURE ... 5
4.0 LOCATION, ACCESS, CLIMATE, PHYSIOGRAPHY AND INFRASTRUCTURE 7
 4.1 LOCATION AND ACCESS ... 7
 4.2 CLIMATE AND PHYSIOGRAPHY .. 7
 4.3 INFRASTRUCTURE AND LOCAL RESOURCES .. 7
5.0 HISTORY AND PREVIOUS EXPLORATION .. 11
 5.1 HISTORY .. 11
 5.2 PREVIOUS RESOURCE ESTIMATES .. 12
 5.3 PRELIMINARY ECONOMIC ASSESSMENT 2010 .. 12
 5.4 PREVIOUS FEASIBILITY STUDIES .. 12
 5.5 PREVIOUS METALLURGICAL TESTING ... 13
6.0 GEOLOGICAL SETTING .. 14
 6.1 REGIONAL GEOLOGY ... 14
 6.2 GEOLOGY, STRUCTURE, AND ALTERATION OF THE SNOWFIELD DEPOSIT 19
 6.2.1 Structure ... 19
 6.2.2 Alteration ... 19
7.0 DEPOSIT TYPES .. 25
 7.1 PORPHYRY DEPOSITS – SNOWFIELD ... 25
8.0 MINERALIZATION ... 28
9.0 EXPLORATION .. 29
10.0 DRILLING .. 30
11.0 SAMPLING METHOD AND APPROACH .. 33
12.0 SAMPLE PREPARATION, ANALYSES AND SECURITY .. 34
13.0 DATA VERIFICATION ... 35
 13.1 SITE VISIT AND INDEPENDENT SAMPLING 2010 35
 13.2 PRETIVM QUALITY CONTROL .. 37
 13.3 2010 DATA VERIFICATION RESULTS ... 38
 13.3.1 Performance of Certified Reference Material .. 38
 13.3.2 Performance of Blank Material ... 38
 13.3.3 2010 Duplicate Statistics ... 38
 13.3.4 Check Samples Assayers Canada .. 38
14.0 ADJACENT PROPERTIES ... 39
15.0 MINERAL PROCESSING AND METALLURGICAL TESTING 41
16.0 SNOWFIELD MINERAL RESOURCE ESTIMATE ... 42
 16.1 INTRODUCTION ... 42
 16.2 PREVIOUS RESOURCE ESTIMATES .. 43
 16.3 SNOWFIELD SAMPLE DATABASE .. 44
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.4</td>
<td>DATABASE VALIDATION</td>
<td>45</td>
</tr>
<tr>
<td>16.5</td>
<td>TOPOGRAPHIC CONTROL</td>
<td>45</td>
</tr>
<tr>
<td>16.6</td>
<td>BULK DENSITY</td>
<td>46</td>
</tr>
<tr>
<td>16.7</td>
<td>SNOWFIELD DOMAIN MODELING</td>
<td>46</td>
</tr>
<tr>
<td>16.8</td>
<td>COMPOSITING</td>
<td>49</td>
</tr>
<tr>
<td>16.9</td>
<td>EXPLORATORY DATA ANALYSIS</td>
<td>49</td>
</tr>
<tr>
<td>16.10</td>
<td>TREATMENT OF EXTREME VALUES</td>
<td>50</td>
</tr>
<tr>
<td>16.11</td>
<td>CONTINUITY ANALYSIS</td>
<td>50</td>
</tr>
<tr>
<td>16.12</td>
<td>BLOCK MODEL</td>
<td>51</td>
</tr>
<tr>
<td>16.13</td>
<td>ESTIMATION AND CLASSIFICATION</td>
<td>51</td>
</tr>
<tr>
<td>16.14</td>
<td>RHENIUM MODEL</td>
<td>52</td>
</tr>
<tr>
<td>16.15</td>
<td>SNOWFIELD MINERAL RESOURCE ESTIMATE</td>
<td>54</td>
</tr>
<tr>
<td>16.16</td>
<td>VALIDATION</td>
<td>56</td>
</tr>
<tr>
<td>17.0</td>
<td>OTHER RELEVANT DATA AND INFORMATION</td>
<td>58</td>
</tr>
<tr>
<td>18.0</td>
<td>CONCLUSIONS AND RECOMMENDATIONS</td>
<td>59</td>
</tr>
<tr>
<td>18.1</td>
<td>CONCLUSIONS</td>
<td>59</td>
</tr>
<tr>
<td>18.2</td>
<td>RECOMMENDATIONS</td>
<td>59</td>
</tr>
<tr>
<td>19.0</td>
<td>REFERENCES</td>
<td>60</td>
</tr>
<tr>
<td>20.0</td>
<td>CERTIFICATES</td>
<td>77</td>
</tr>
</tbody>
</table>
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 3.1</td>
<td>Claims Listing for the Snowfield Property</td>
<td>5</td>
</tr>
<tr>
<td>Table 6.1</td>
<td>Summary of Regional Stratigraphy – Oldest to Youngest</td>
<td>16</td>
</tr>
<tr>
<td>Table 10.1</td>
<td>2010 Significant Drill Intersections</td>
<td>32</td>
</tr>
<tr>
<td>Table 14.1</td>
<td>KSM Reserves as of April 2010</td>
<td>39</td>
</tr>
<tr>
<td>Table 14.2</td>
<td>2011 Iron Cap Mineral Resource Estimate at 0.50 g/t Au Equivalent Cut-off</td>
<td>40</td>
</tr>
<tr>
<td>Table 16.1</td>
<td>April 21, 2008 Mineral Resource Estimate at 0.1g/t Au Cut-off</td>
<td>43</td>
</tr>
<tr>
<td>Table 16.2</td>
<td>January 31, 2009 Mineral Resource Estimate at 0.5 g/t AuEq Cut-off</td>
<td>43</td>
</tr>
<tr>
<td>Table 16.3</td>
<td>December 1, 2009 Mineral Resource Estimate at 0.35g/t AuEq Cut-off</td>
<td>44</td>
</tr>
<tr>
<td>Table 16.4</td>
<td>July 27, 2010 Mineral Resource Estimate at a 0.30g/t AuEq Cut-off</td>
<td>44</td>
</tr>
<tr>
<td>Table 16.5</td>
<td>Snowfield Drillhole Database Records</td>
<td>45</td>
</tr>
<tr>
<td>Table 16.6</td>
<td>Snowfield Bulk Density Statistics</td>
<td>46</td>
</tr>
<tr>
<td>Table 16.7</td>
<td>Summary Assay Statistics by Operational Zone</td>
<td>46</td>
</tr>
<tr>
<td>Table 16.8</td>
<td>Assay Correlation Matrices by Operational Zone</td>
<td>48</td>
</tr>
<tr>
<td>Table 16.9</td>
<td>Summary Composite Statistics by Domain</td>
<td>50</td>
</tr>
<tr>
<td>Table 16.10</td>
<td>Threshold Values</td>
<td>50</td>
</tr>
<tr>
<td>Table 16.11</td>
<td>Snowfield semi-variogram definitions</td>
<td>51</td>
</tr>
<tr>
<td>Table 16.12</td>
<td>Block model Setup</td>
<td>51</td>
</tr>
<tr>
<td>Table 16.13</td>
<td>Re Assay and Composite Summary Statistics</td>
<td>53</td>
</tr>
<tr>
<td>Table 16.14</td>
<td>Co-Located Cross Semi-Variogram Models</td>
<td>54</td>
</tr>
<tr>
<td>Table 16.15</td>
<td>Economic Parameters</td>
<td>54</td>
</tr>
<tr>
<td>Table 16.16</td>
<td>Mineral Resource Estimate at a 0.30g/T AuEq Cut-off</td>
<td>55</td>
</tr>
<tr>
<td>Table 16.17</td>
<td>Grade & Tonnage Estimate at a 0.50g/T AuEq Cut-off Within The 0.3g/T AuEq Optimized Pit Shell</td>
<td>55</td>
</tr>
<tr>
<td>Table 16.18</td>
<td>Grade & Tonnage Estimate At A 1.50g/T AuEq Cut-off Within The 0.3g/T AuEq Optimized Pit Shell</td>
<td>56</td>
</tr>
<tr>
<td>Table 16.19</td>
<td>Comparison Of Average Composite Grades And Block Grades</td>
<td>56</td>
</tr>
<tr>
<td>Figure</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>3.1</td>
<td>Mineral Claim Map of the Snowfield Property</td>
<td>6</td>
</tr>
<tr>
<td>4.1</td>
<td>KSM Project Planned Road Access</td>
<td>9</td>
</tr>
<tr>
<td>4.2</td>
<td>Proposed High Voltage Northwest Transmission Line</td>
<td>10</td>
</tr>
<tr>
<td>6.1</td>
<td>Geology of the Sulphurets Area</td>
<td>15</td>
</tr>
<tr>
<td>6.2</td>
<td>Regional Stratigraphic Column</td>
<td>17</td>
</tr>
<tr>
<td>6.3</td>
<td>Map of Regional Geology – Simplified Geology and Location</td>
<td>18</td>
</tr>
<tr>
<td>6.4</td>
<td>Typical Cross Section 424911E through Snowfield Deposit</td>
<td>21</td>
</tr>
<tr>
<td>6.5</td>
<td>Cross Section 424811E through Snowfield Deposit showing Gold Values</td>
<td>22</td>
</tr>
<tr>
<td>6.6</td>
<td>Cross Section 424811E through Snowfield Deposit showing Copper Values</td>
<td>23</td>
</tr>
<tr>
<td>6.7</td>
<td>Cross Section 424811E through Snowfield Deposit showing Molybdenum Values</td>
<td>24</td>
</tr>
<tr>
<td>7.1</td>
<td>Schematic diagram of a porphyry Cu system in the root zone of an andesitic stratovolcano</td>
<td>26</td>
</tr>
<tr>
<td>7.2</td>
<td>Schematic diagram of a convecting magma that is feeding a small subvolcanic intrusion below a porphyry deposit</td>
<td>27</td>
</tr>
<tr>
<td>10.1</td>
<td>2010 Snowfield Diamond Drill Plan</td>
<td>31</td>
</tr>
<tr>
<td>13.1</td>
<td>P&E Independent Site Visit Sample Results for Gold</td>
<td>35</td>
</tr>
<tr>
<td>13.2</td>
<td>P&E Independent Site Visit Sample Results for Copper</td>
<td>36</td>
</tr>
<tr>
<td>13.3</td>
<td>P&E Independent Site Visit Sample Results for Silver</td>
<td>36</td>
</tr>
<tr>
<td>13.4</td>
<td>P&E Independent Site Visit Sample Results for Molybdenum</td>
<td>37</td>
</tr>
<tr>
<td>13.5</td>
<td>P&E Independent Site Visit Sample Results for Rhenium</td>
<td>37</td>
</tr>
<tr>
<td>16.1</td>
<td>Au and Cu assay grade distribution by operational zone</td>
<td>47</td>
</tr>
<tr>
<td>16.2</td>
<td>Au and Cu assay value correlation</td>
<td>48</td>
</tr>
<tr>
<td>16.3</td>
<td>Co-located Re and Mo composite correlation graph</td>
<td>53</td>
</tr>
<tr>
<td>16.4</td>
<td>Nearest Neighbor validation graphs</td>
<td>57</td>
</tr>
</tbody>
</table>
EXECUTIVE SUMMARY

The following report was prepared to provide a NI 43-101 compliant Technical Report and Updated Resource Estimate of the gold, silver, copper, molybdenum and rhenium mineralization at the Snowfield Property, British Columbia (the “Property” or the “Project”).

In 2010, pursuant to a purchase and sale agreement between Silver Standard Resources Inc. (“Silver Standard”) and Pretium Resources Inc. (“Pretivm”), Pretivm became the owner of the Brucejack and Snowfield Projects, and retains a 100% outright interest in the two Properties.

The Snowfield Property is composed of one mineral claim (509216) and two placer claims, totaling 2,142.2 ha in area and all claims are in good standing until January 31, 2017.

The Snowfield Property falls within the boundaries of the Cassiar-Iskut-Stikine Land and Resource Management Plan (LRMP) area. All claims located within the boundaries of the LRMP are considered as areas of General Management Direction, with none of the claims falling inside any Protected or Special Management Areas.

At present the land claims in the area are in review and subject to ongoing discussions between various native groups and the Government of British Columbia.

The Snowfield Property is situated at an approximate latitude of 56°28′20″N by longitude 130°11′31″W, a position approximately 950 km northwest of Vancouver, 65 km north-northwest of Stewart, and 21 km south-southeast of the Eskay Creek Mine. The coordinates used in this report are located relative to the NAD83 UTM coordinate system.

The Snowfield Property is located in the Boundary Range of the Coast Mountain physiographic belt along the western margin of the Intermontane Tectonic Belt. The local terrain is generally steep with local reliefs of 1000 m from valleys occupied by receding glaciers, to ridges at elevations of 1200 m asl. Elevations within the Project area range from 1000 m along the Mitchell Glacier to 1960 m asl along the ridge between the Mitchell and Hanging Glaciers. At the gossanous Snowfield deposit, the relief is relatively low to moderate.

The Project is easily accessible with the use of a chartered helicopter from the town of Stewart, or seasonally from the settlement of Bell II. The flight time from Stewart is approximately 30 minutes and slightly less from Bell II; however, Stewart has an established year-round helicopter base.

The Snowfield Property lies immediately east of Seabridge Gold Inc.’s (Seabridge’s) KSM Project and would likely be influenced by future access plans for that area, as outlined within the Preliminary Economic Assessment (PEA) study by Seabridge (McElhanney Consulting Services Ltd. [McElhanney], 2008; Wardrop, 2009a). The proposed development activities for the KSM Project call for a combined 23 km tunnel for slurry delivery to the processing plant site located at the upper reaches of the Tiegen Creek Valley and a 14 km gravel road that would allow material to be trucked to the paved Cassiar highway (Highway 37). In addition, road access to Mitchell Creek itself would be provided by a 34 km continuation of the Eskay Creek Mine access road.

There are no local resources other than abundant water for any drilling work. The nearest infrastructure is the town of Stewart, approximately 65 km to the south, which has a minimum of
supplies and personnel. The towns of Terrace and Smithers are also located in the same general region as the Project. Both are directly accessible by daily air service from Vancouver.

The nearest railway is the Canadian National Railway (CNR) Yellowhead route, which is located approximately 220 km to the southeast. This line runs east-west and terminates at the deep water port of Prince Rupert on the west coast of BC. The bulk handling port at Stewart is the most northerly ice-free shipping port in North America, and is accessible to store and ship concentrates. Such material is currently being shipped from the Wolverine and Huckleberry mines via this terminal.

A proposal to have a high voltage power line run parallel with existing lines along Highway 37 is currently under review (www.highway37.com).

The initial plan calls for the new 287-kV line that would extend from the community of Terrace to the beginning of the Galore Creek access road at Bob Quinn Lake providing access for the project to the BC Hydro electric grid. The final capacity of this transmission line has yet to be determined and may be increased due to projected demand.

The exploration history of the area dates back to the 1880s when placer gold was located at Sulphurets and Mitchell Creeks. Placer mining was intermittently undertaken throughout the early 1900s and remained the main focus of prospecting until the mid-1930s.

From 1960 to 1980 Granduc Mines carried out regional reconnaissance prospecting, mapping, and rock sampling over the entire Sulphurets area resulting in the discovery of several porphyry copper-molybdenum and copper-gold occurrences.

In 1980 Esso optioned the Sulphurets property and conducted detailed geological mapping, trenching, and rock geochemical sampling. The results of this work led to the discovery of the Snowfield, Quartz Stockwork, and Moly zones.

From 1981 to 1983 Esso continued exploring the Snowfield zone which appeared to have the potential for a large, low grade gold deposit. The company excavated and sampled 24 trenches, totaling 192 m, in the Snowfield zone outlining a 240 m by 120 m area of gold mineralization with an average grade of 0.088 oz/t gold (McCrea, 2007). Their work also discovered the Josephine zone with vein-hosted gold-silver mineralization.

In 1985 Esso terminated their option of the Sulphurets property. Newhawk and Granduc entered into a 60:40 joint venture agreement with Newhawk operating. From 1985 to 1998, minor diamond drilling and sampling was completed by the Newhawk-International JV.

In 1999 Silver Standard acquired the Sulphurets claim through the acquisition of all of the shares of Newhawk, including the subject claims. From 2006 to 2010 Silver Standard continued extensive drilling at the Snowfield Project. A first, NI 43-101 compliant resource estimate was prepared in 2006, updates to the resources were completed in 2008, two in 2009 and another in 2010.

The Snowfield Project and the surrounding Sulphurets district are underlain by the Upper Triassic and Lower to Middle Jurassic Hazelton Group of volcanic, volcaniclastic, and
sedimentary rocks. According to Roach and MacDonald (1992), the stratigraphic assemblage comprises a package, from oldest to youngest, of:

- Lower Unuk River Formation: alternating siltstone and conglomerate;
- Upper Unuk River Formation: alternating intermediate volcanic rock and siltstone;
- Betty Creek Formation: alternating conglomerate, sandstone, and intermediate to mafic volcanic rock;
- Mount Dilworth Formation: felsic pyroclastic tuffaceous rock and flows.
- Salmon River and Bowser Formations: alternating siltstone and sandstone.
- Britton and Alldrick (1988) described three intrusive episodes in the area including intermediate to felsic plutons that are probably coeval with volcanic and volcaniclastic supracrustal rocks, small stocks related to the Cretaceous Coast Plutonic Complex, and minor tertiary dykes and sills.

The Hazelton Group lithologies display fold styles ranging from gently warped to tight disharmonic folds. Northerly striking, steep normal faults are common and syn-volcanic, syn-sedimentary, and syn-intrusive faults have been inferred in the region. Minor thrust faults, dipping westerly, are common in the region and are important in the northern and western parts of the Sulphurets area in regard to the interpretation of mineralized zones. Metamorphic grade throughout the area is, at least, lower greenschist.

There are more than seventy documented mineral occurrences and showings in the Sulphurets area. Copper, molybdenum, gold, and silver mineralization found within gossans have affinities to both porphyry and mesothermal to epithermal types of vein deposits. Most mineral deposits occur in the upper members of the Unuk River Formation or the lower members of the Betty Creek Formation.

The Snowfield Deposit is a near-surface, low grade, bulk tonnage, and porphyry-style gold deposit with associated silver, copper, molybdenum and rhenium mineralization.

Gold mineralization is hosted by schistose, pervasively altered (quartz-sericite-chlorite) volcanic and volcaniclastic rocks that contain 1% to 5% disseminated pyrite, minor disseminations, veinlets of tourmaline, molybdenite, and abundant younger calcite veinlets.

Gold mineralization occurs as microscopic grains (less than 30 μm) of electrum that are encased within fine-grained, pervasively disseminated pyrite in close association with trace amounts of galena and sphalerite (Margolis, 1993). Other associated minerals within the gold-mineralized zone include: tetrahedrite-tennantite, barite, acanthite, minor Mn-rich calcite, and rare chalcopyrite. Minute clusters, approximately 75 μm, of pyrite and rutile (+ barite) are also observed within the gold-bearing mineralization (Margolis, 1993).

One hundred ninety two (192) drill holes were used to estimate the current resources. Conceptual optimized Whittle pit shells were developed based on all available mineral resources (Measured, Indicated and Inferred). Commodity prices are based on the three-year trailing average as of December 31, 2010. The results from the optimized pit-shells are used solely for the purpose of reporting mineral resources that have reasonable prospects for economic extraction.
All mineral resources were reported against a 0.30 g/t Au equivalent cut-off, as constrained within the optimized pit shell. Resources for three different pit shells were defined.

P&E 2011 Resource Estimates for the Snowfield Property

<table>
<thead>
<tr>
<th>TABLE- I</th>
<th>SNOWFIELD ESTIMATED MINERAL RESOURCES BASED ON A CUT-OFF GRADE OF 0.30 G/T AuEq.(1)(2)(3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Category</td>
<td>Tonnés (millions)</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Measured</td>
<td>189.8</td>
</tr>
<tr>
<td>Indicated</td>
<td>1,180.3</td>
</tr>
<tr>
<td>M+I</td>
<td>1,370.1</td>
</tr>
<tr>
<td>Inferred(2)</td>
<td>833.2</td>
</tr>
</tbody>
</table>

(1) Mineral resources for the February 2011 estimate are defined within a Whittle optimized pit shell that incorporates project metal recoveries, estimated operating costs and metals price assumptions. Parameters used in the estimate include metals prices (and respective recoveries) of US$1,025/oz. gold (71%), US$16.60/oz. silver (70%), US$19/lb. copper (70%), US$19/lb. molybdenum (60%) and rhenium US$145/oz (60%). The pit optimization utilized the following cost parameters: Mining US$1.75/tonne, Processing US$6.10/tonne and G&A US$0.90/tonne along with pit slopes of 45 degrees. Mineral resources which are not mineral reserves do not have demonstrated economic viability. The estimate of mineral resources may be materially affected by environmental, permitting, legal, marketing, or other relevant issues. The mineral resources in this news release were estimated using the Canadian Institute of Mining, Metallurgy and Petroleum (CIM), CIM Standards on Mineral Resources and Reserves, Definitions and Guidelines prepared by the CIM Standing Committee on Reserve Definitions and adopted by CIM Council.

(2) The quantity and grade of reported Inferred resources in this estimation are uncertain in nature and there has been insufficient exploration to define these Inferred resources as an Indicated or Measured mineral resource and it is uncertain if further exploration will result in upgrading them to an Indicated or Measured mineral resource category.

(3) Contained metal may differ due to rounding. “Moly” refers to molybdenum. “Rhen” refers to rhenium

<table>
<thead>
<tr>
<th>TABLE- II</th>
<th>SNOWFIELD GRADE & TONNAGE ESTIMATE AT A 0.50 G/T AuEq cut-off WITHIN THE 0.30 G/T AuEq OPTIMIZED PIT SHELL (1)(2)(3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Category</td>
<td>Tonnés (millions)</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Measured</td>
<td>184.2</td>
</tr>
<tr>
<td>Indicated</td>
<td>1,087.4</td>
</tr>
<tr>
<td>M+I</td>
<td>1,271.6</td>
</tr>
<tr>
<td>Inferred(2)</td>
<td>510.5</td>
</tr>
</tbody>
</table>

(1), (2) and (3), See footnotes to previous table.
The current, updated resources at Snowfield were derived from modeling the main Snowfield deposit on the Property and subsequently defining resources in optimized pits at 0.30 g/t AuEq cut-off, 0.5 g/t AuEq cut-off and 1.5 g/t AuEq cut-off. The resources are defined within Whittle optimized pit shells that incorporate project metal recoveries, estimated operating costs and metals price assumptions.

A positive Preliminary Economic Assessment (“PEA”) for the combined Snowfield-Brucejack Project was delivered by Wardrop Engineering in October 2010, and was based on information up to the end of 2009. The drilling completed in 2010 allowed Pretivm to redefine resources based on higher cut-off grades. The Wardrop PEA recommended continuing with a pre-feasibility study at Snowfield.

It is recommended, based on the current updated resource estimate, to undertake the following at Snowfield:

- Continue with engineering, environmental and metallurgical studies toward fulfilling the requirements for the pre-feasibility study;
- Complete approximately 10,000 metres of diamond drilling in the recently outlined high grade copper zone in the south-eastern part of the deposit with the goal of expanding the zone.

This work should be undertaken simultaneously at an approximate cost of $4 M.
1.0 INTRODUCTION AND TERMS OF REFERENCE

1.1 TERMS OF REFERENCE

The following report was prepared to provide a NI 43-101 compliant Technical Report and Updated Resource Estimate of the gold, silver, copper, molybdenum and rhenium mineralization at the Snowfield Property, British Columbia (the “Property” or the “Project”). Pretium Resources Inc., (“Pretivm”) has a 100% outright interest in the property.

This report was prepared by P&E Mining Consultants Inc., (“P&E”) at the request of Mr. Kenneth McNaughton, Vice President and Chief Exploration Officer, Pretium Resources Inc. Pretivm is a Vancouver, British Columbia based company trading on the Toronto Stock Exchange (TSX) under the symbol of “PVG”, with its corporate office at:

1600- 570 Granville Street,
Vancouver, BC V6C 3P1
Tel: 604-558-1784

This report is considered current as of January 31, 2011.

Mr. Fred Brown, Pr.Sc.Nat., a qualified person under the terms of NI 43-101, conducted a site visit to the Property from September 3 to 5, 2010. An independent verification sampling program was conducted by Mr. Brown at that time.

In addition to the site visit, P&E carried out a study of all relevant parts of the available literature and documented results concerning the project and held discussions with technical personnel from the company regarding all pertinent aspects of the project. The reader is referred to these data sources, which are outlined in the “Sources of Information” section of this report, for further detail on the project.

1.2 SOURCES OF INFORMATION

This report is based, in part, on internal company technical reports, and maps, published government reports, company letters and memoranda, and public information as listed in the “References” Section 19.0 at the conclusion of this report. Several sections from reports authored by other consultants have been directly quoted in this report, and are so indicated in the appropriate sections. P&E has not conducted detailed land status evaluations, and has relied upon previous qualified reports, public documents and statements by Pretivm regarding property status and legal title to the project.
1.3 UNITS AND CURRENCY

Unless otherwise stated all units used in this report are metric. Gold assay values are reported in grams per metric tonne ("g/t"), and copper values are reported in percent ("%") unless some other unit is specifically stated. The CDN$ is used throughout this report.

1.4 GLOSSARY AND ABBREVIATION OF TERMS

In this document, in addition to the definitions contained heretofore and hereinafter, unless the context otherwise requires, the following terms have the meanings set forth below.

"$" and "C$" means the currency of Canada.

"AA" is an acronym for Atomic Absorption, a technique used to measure metal content subsequent to fire assay.

"asl" means above sea level.

"Au" means gold.

"AusIMM" mean Australian Institute of Mining and Metallurgy.

"Azi" means azimuth.

"BLEG" means Bulk Leach Extractable Gold.

"CIM" means the “Canadian Institute of Mining, Metallurgy and Petroleum.”

"CSA" means the Canadian Securities Administrators.

"DDH" means diamond drillhole.

"DFS" means Definitive Feasibility Study (previously termed Bankable Feasibility Study).

"E" means east.

"el" means elevation level.

"g/t" means grams per tonne.

"g/t Au" means grams of gold per tonne of rock

"ha" means Hectare.

"IP" means Induced Polarization.

"IRR" means Internal Rate of Return.

"kg" means kilogram.

"km" means kilometre equal to 1,000 metres or approx. 0.62 statute miles.

"m" means metric distance measurement equivalent to approximately 3.27 feet

"M" means million.

"Ma" means millions of years.

"mm/an" means millimetres per annum.

"Mt" means millions of tonnes.

"N" means north.

"NE" means northeast.

"NN" means Nearest Neighbour.

"NTS" means National Topographic System.

"NW" means northwest.

"NSR" is an acronym for “Net Smelter Return”, which means the amount actually paid to the mine or mill owner from the sale of ore, minerals and other materials or concentrates mined and removed from mineral properties, after deducting certain expenditures as defined in the underlying smelting.

"oz/T" means ounces per ton.
“P&E” means P&E Mining Consultants Inc.
“PEA” means a Preliminary Economic Assessment study.
“ppm” means parts per million.
“Property” means Snowfield Project.
“S” means south.
“SE” means southeast.
“SEDAR” means the System for Electronic Document Analysis and Retrieval.
“Snowfield” means the Snowfield Project.
“SW” means southwest.
“t” means metric tonne equivalent to 1,000 kilograms or approximately 2,204.62 pounds.
“T” means Short Ton (standard measurement), equivalent to 2,000 pounds.
“t/a” means tonnes per year.
“tpd” means tonnes per day.
“US$” means the currency of the United States.
“UTM” means Universal Transverse Mercator.
“W” means west.
2.0 RELIANCE ON OTHER EXPERTS

The authors wish to make clear that they are QPs only in respect of the areas in this report identified in their “Certificates of Qualified Persons” submitted with this report to the Canadian Securities Administrators.

The report has been reviewed for factual errors by Pretivm. Hence, the statement and opinions expressed in this document are given in good faith and in the belief that such statements and opinions are neither false nor misleading at the date of this report.

Pretivm’s employees, who are not QPs, provided additional information on taxes and marketing.
3.0 PROPERTY DESCRIPTION AND TENURE

3.1 DESCRIPTION AND TENURE

In 2010, pursuant to a purchase and sale agreement between 0777666 BC Ltd. (as the seller) and 0890693 BC Ltd. (as the buyer), 0777666 BC Ltd. agreed to sell to 0890693 BC Ltd. the Snowfield-Brucejack Project, and then, pursuant to an acquisition agreement between Silver Standard (as the seller) and Pretivm (as the buyer), Silver Standard agreed to sell to Pretivm all the issued shares of 0890693 BC Ltd.

The Snowfield Property is composed of one mineral claim (509216) and two placer claims, totaling 2,142.2 ha. The two placer claims overlap the mineral claim.

The list of claims is presented in Table 3.1. The location and configuration of the subject claims and the third-party internal mining lease are shown in Figure 3.1.

<table>
<thead>
<tr>
<th>Tenure No.</th>
<th>Type</th>
<th>ha</th>
<th>Map</th>
<th>Expiry</th>
<th>Status</th>
<th>Owner</th>
</tr>
</thead>
<tbody>
<tr>
<td>509216</td>
<td>Mineral</td>
<td>1,267.43</td>
<td>104B</td>
<td>Jan. 31, 2017</td>
<td>Good</td>
<td>0890693BC Ltd.</td>
</tr>
<tr>
<td>594267</td>
<td>Placer</td>
<td>446.39</td>
<td>104B</td>
<td>Jan. 31, 2011</td>
<td>Good</td>
<td>0890693BC Ltd.</td>
</tr>
</tbody>
</table>
Figure 3.1 Mineral Claim Map of the Snowfield Property
4.0 LOCATION, ACCESS, CLIMATE, PHYSIOGRAPHY AND INFRASTRUCTURE

4.1 LOCATION AND ACCESS

The Snowfield Property is situated at an approximate latitude of 56°31'5"N by longitude 130°12'18"W. The property is situated approximately 950 km northwest of Vancouver, 65 km northwest of Stewart, and 21 km south-southeast of the Eskay Creek Mine. The geographic centre of the property is at UTM coordinates 6,264,193 m north by 434,777 m east, Zone 09 (NAD 83), within NTS map sheet 104B/9 east.

The Snowfield Property is located in the Boundary Range of the Coast Mountain Physiographic Belt along the western margin of the Intermontane Tectonic Belt. The local terrain is generally steep with local reliefs of 1000 m from valleys occupied by receding glaciers, to ridges at elevations of 1200 m asl. Elevations within the Project area range from 1000 m along the Mitchell Glacier to 1960 m asl along the ridge between the Mitchell and Hanging Glaciers. However, within several areas of the Project the relief is relatively low to moderate.

The Project is easily accessible with the use of a chartered helicopter from the town of Stewart, or seasonally from the settlement of Bell II. The flight time from Stewart is approximately 30 minutes and slightly less from Bell II however, Stewart has an established year-round helicopter base.

Heavy exploration equipment, fuel, and camp provisions can be transported along a good gravel road from Stewart to the Granduc staging site and then flown by helicopter to the Project. This combined truck and helicopter transportation method cuts the more expensive helicopter flight time in half from Stewart.

4.2 CLIMATE AND PHYSIOGRAPHY

The climate is typical of northwestern British Columbia with cool, wet summers, and relatively moderate but wet winters. Annual temperatures range from +20°C to -20°C. Precipitation is high with heavy snowfall accumulations ranging from 10 m to 15 m at higher elevations and 2 m to 3 m along the lower river valleys. Snow packs cover the higher elevations from October to May. The optimum field season is from late June to mid-October.

The tree line is at approximately 1200 m elevation. Sparse fir, spruce, and alder grow along the valley bottoms with only scrub alpine spruce, juniper, alpine grass, moss, and heather covering the steep valley walls. The Snowfield Project, at an elevation above 1500 m, has only sparse mosses along drainages. Rocky glacial moraine and polished glacial-striated outcrops dominate the terrain above tree line.

4.3 INFRASTRUCTURE AND LOCAL RESOURCES

The Snowfield Property lies immediately east of Seabridge Gold Inc.’s (Seabridge’s) KSM Project and would likely be influenced by future access plans for that area, as outlined within the Preliminary Economic Assessment (PEA) study by Seabridge (McElhanney Consulting Services Ltd. [McElhanney], 2008; Wardrop, 2009a). The proposed development activities for the KSM Project call for a combined 23 km tunnel for slurry delivery to the processing plant site located at the upper reaches of the Tiegen Creek Valley and a 14 km gravel road that would allow material to be trucked to the paved Cassiar highway (Highway 37). In addition, road access to Mitchell
Creek itself would be provided by a 34 km continuation of the Eskay Creek Mine access road (Figure 4.1).

There are no local resources other than abundant water for any drilling work. The nearest infrastructure is the town of Stewart, approximately 65 km to the south, which has a minimum of supplies and personnel. The towns of Terrace and Smithers are also located in the same general region as the Project. Both are directly accessible by daily air service from Vancouver.

The nearest railway is the Canadian National Railway (CNR) Yellowhead route, which is located approximately 220 km to the southeast. This line runs east-west and terminates at the deep water port of Prince Rupert on the west coast of British Columbia.

The bulk materials port in Stewart is the most northerly ice-free shipping port in North America, and is accessible to store and ship concentrates. Such material is currently being shipped from the Wolverine and Huckleberry mines via this terminal.

A proposal to have a high voltage power line run parallel with existing lines along Highway 37 is currently under review (www.highway37.com).

The initial plan calls for the new 287-kV line that would extend from the community of Terrace to the beginning of the Galore Creek access road at Bob Quinn Lake providing access for the project to the BC Hydro electric grid (Figure 4.1). The final capacity of this transmission line has yet to be determined and may be increased due to project demand.
Figure 4.1 KSM Project Planned Road Access

Note: After Seabridge; Wardrop, 2009a.
Figure 4.2 Proposed High Voltage Northwest Transmission Line

Source: www.highway37.com
5.0 HISTORY AND PREVIOUS EXPLORATION

The Snowfield Property and the surrounding region have a history rich in exploration for precious and base metals dating back to the late 1800s. This section describes the mineral exploration, including the historical drilling carried out prior to Pretivm’s acquisition of the separate Brucejack and Snowfield Properties, within the Brucejack portion of the Project itself and the surrounding region. The historical data have been summarized mostly from various Assessment Reports available through the British Columbia Ministry of Energy, Mines and Petroleum Resources.

5.1 HISTORY

The exploration history of the Sulphurets-Mitchell Creek area dates back to 1933 when placer gold miners worked on Sulphurets Creek. In 1959, Granduc staked the original Sulphurets claim group (McCrea, 2007) starting the era of modern exploration as briefly outlined below:

1960-1980 – Granduc carried out regional reconnaissance prospecting, mapping, and rock sampling over the entire Sulphurets area resulting in the discovery of several porphyry copper-molybdenum and copper-gold occurrences.

- 1980 – Esso optioned the Sulphurets property and conducted detailed geological mapping, trenching, and rock geochemical sampling. The results of this work led to the discovery of the Snowfield, Quartz Stockwork, and Moly zones.
- 1981-1983 – Esso continued exploring the Snowfield zone which appeared to have the potential for a large, low grade gold deposit.
- 1983 – Esso excavated and sampled 24 trenches, totalling 192 m, in the Snowfield zone outlining a 240 m by 120 m area of gold mineralization with an average grade of 0.088 oz/t gold (McCrea, 2007). Their work also discovered the Josephine zone with vein-hosted gold-silver mineralization.
- 1985 – Esso terminated their option of the Sulphurets property. Newhawk and Granduc entered into a 60:40 joint venture agreement with Newhawk operating.
- 1985-1988 – Newhawk tested the Snowfield zone with five diamond drill holes totalling 740 m. At the time, the mineralization was interpreted to be a tabular, shallow, southwardly dipping body averaging 70 m thick.
- Preliminary metallurgical testing was carried out on the drill core and prospecting continued on the property until 1989.
- 1989 – Newhawk-International joint venture established a property-wide control grid (8 line-km) and conducted a rock sampling program including further rock sampling and trenching on the Snowfield zone.
- 1991 – Two drill holes, totalling 350 m, tested the Snowfield zone with additional rock sampling along its eastern exposed limits. The Newhawk-International joint venture also funded a doctoral thesis on the property by Jake Margolis, which was published in 1993.
- 1993 – Three deep diamond drill holes, totalling 1,164 m, tested the southern extension of the Snowfield zone and another three drill holes, totalling 295 m, tested the nearby Josephine Vein zone.
- 1999 – Silver Standard acquired the Sulphurets claim through the acquisition of all of the shares of Newhawk, including the subject claims.
• 2006 – Silver Standard evaluated the Snowfield zone with 27 diamond drill holes, totalling 6,141 m, and rock sampling to test the lateral and vertical limits of the gold mineralization. An initial resource estimate was prepared.
• 2007 – Silver Standard drilled 29 NQ-2 size diamond drill holes, totalling 8,666.29 m. There were 21 drill holes tested at the Snowfield zone, 6 drill holes tested at the nearby Coffeepot zone situated immediately west of the Snowfield zone, and 1 drill hole tested at the Mitchell East zone (now recognized to be the northern extension of the Snowfield zone). A total of 5,484 samples were collected from the 2007 drill core.
• 2008 - Silver Standard drilled 6,945 m in 31 holes. A resource estimate was prepared by Minorex Consulting Ltd., (see Table 5-1)
• 2009/2010 – Silver Standard drilled 23,778 m in 42 drill holes, increased the drill density to 100 m centres in the main body of the Inferred resources outlined in 2008, and extended the known mineralization to the northwest and southeast. A higher grade gold-copper core with silver and molybdenum credits was defined, and continuity of grade in the northern half of the zone was proven. Two resource estimates were prepared in 2009 and one in 2010 by P&E and are presented in Table 16.2, Table 16.3 and Table 16.4.

5.2 PREVIOUS RESOURCE ESTIMATES

There have been five previous resource estimates completed for the Snowfield Property, which are detailed in Section 16 of this Technical Report.

5.3 PRELIMINARY ECONOMIC ASSESSMENT 2010

Pretivm commissioned Wardrop Engineering Inc, a Tetra Tech Company (“Wardrop”), to complete a preliminary assessment (PA) of the Snowfield and Brucejack deposits.

The following consultants were commissioned to complete the component studies for the National Instrument 43-101 (NI 43-101) Technical Report:

• Wardrop: processing, infrastructure, capital and operating cost estimates, and financial analysis;
• AMC Mining Consultants (Canada) Ltd. (AMC): mining;
• P&E Mining Consultants Inc. (P&E): mineral resource estimate;
• Rescan Environmental Services Ltd. (Rescan): environmental aspects, waste and water treatment;
• BGC Engineering Inc. (BGC): tailings impoundment facility, waste rock and water management, and geotechnical design for the open pit slopes.

Based on the results of the PA, it was recommended that Pretivm continue with the next phase of the project, a Pre-feasibility Study, in order to identify opportunities and further assess viability of the project. The full PA can be consulted at www.sedar.com.

5.4 PREVIOUS FEASIBILITY STUDIES

There have been no previous feasibility studies undertaken on the Snowfield Property.
5.5 PREVIOUS METALLURGICAL TESTING

Metallurgical testing is reported on in Section 15 of this Technical Report.
6.0 GEOLOGICAL SETTING

The following description of the regional and local geology of the Snowfield Project is drawn heavily from the Technical Report titled, “Technical Report on the Snowfield Property, Skeena Mining Division, British Columbia, Canada”, by Minorex Consulting Ltd., dated April 21, 2008. The Sulphurets district is situated along the western margin of the Intermontane Tectonic Belt, underlain by Stikine Terrane. This district has been the subject of several geological studies since the mid-1980s when it was actively explored for porphyry copper-molybdenum and copper-gold (i.e. Kerr), exhalative volcanogenic (i.e. Eskay Creek), and lode gold-silver vein deposits (i.e. Snip). Researchers include scientists from the Geological Survey of Canada, the British Columbia Geological Survey, the University of British Columbia, and the University of Oregon. The following discussion of the regional geology is a brief summary of their findings. Figure 6.1 shows the geology of the Sulphurets area.

6.1 REGIONAL GEOLOGY

The Snowfield Project and the surrounding Sulphurets district are underlain by the Upper Triassic and Lower to Middle Jurassic Hazelton Group of volcanic, volcaniclastic, and sedimentary rocks. According to Roach and MacDonald (1992), the stratigraphic assemblage comprises a package, from oldest to youngest, of:

- Lower Unuk River Formation: alternating siltstone and conglomerate;
- Upper Unuk River Formation: alternating intermediate volcanic rock and siltstone;
- Betty Creek Formation: alternating conglomerate, sandstone, and intermediate to mafic volcanic rock;
- Mount Dilworth Formation: felsic pyroclastic tuffaceous rock and flows;
- Salmon River and Bowser Formations: alternating siltstone and sandstone;
- Britton and Alldrick (1988) described three intrusive episodes in the area including intermediate to felsic plutons that are probably coeval with volcanic and volcaniclastic supracrustal rocks, small stocks related to the Cretaceous Coast Plutonic Complex, and minor tertiary dykes and sills.
The Hazelton Group lithologies display fold styles ranging from gently warped to tight disharmonic folds. Northerly striking, steep normal faults are common and syn-volcanic, syn-sedimentary, and syn-intrusive faults have been inferred in the region. Minor thrust faults, dipping westerly, are common in the region and are important in the northern and western parts of the Sulphurets area in regard to the interpretation of mineralized zones. Metamorphic grade throughout the area is, at least, lower greenschist.

There are more than seventy documented mineral occurrences and showings in the Sulphurets area. Copper, molybdenum, gold, and silver mineralization found within gossans have affinities to both porphyry and mesothermal to epithermal types of vein deposits. Most mineral deposits
occur in the upper members of the Unuk River Formation or the lower members of the Betty Creek Formation.

Regional geologic mapping has been completed by the Geological Survey of Canada, the British Columbia Ministry of Energy, Mines and Resources, and the Mineral Deposits Research Unit (MDRU) at the University of British Columbia. A regional geology map is depicted in Figure 6.3.

The regional stratigraphic assemblage as originally compiled by Kirkham (1963) and later modified by Britton and Alldrick (1988), Alldrick and Britton (1991), McCrea (2007) and Blanchflower (2008), is illustrated in Figure 6.2 and has been summarized in Table 6.1.

<table>
<thead>
<tr>
<th>Formation</th>
<th>Stage (Triassic – Jurassic)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lower Unuk River</td>
<td>Norian to Hettangian</td>
<td>Alternating siltstone and conglomerate</td>
</tr>
<tr>
<td>Upper Unuk River</td>
<td>Hettangian to Pliensbachian</td>
<td>Alternating intermediate volcanic rock and siltstone</td>
</tr>
<tr>
<td>Betty Creek</td>
<td>Pliensbachian to Toarcian</td>
<td>Alternating conglomerate, sandstone, intermediate and mafic volcanic rock</td>
</tr>
<tr>
<td>Mount Dilworth</td>
<td>Toarcian</td>
<td>Felsic pyroclastic rocks and flows, including tuffaceous rock ranging from dust tuff to tuff breccia and localized welded ash tuff</td>
</tr>
<tr>
<td>Salmon River & Bowser</td>
<td>Toarcian to Bajocian</td>
<td>Alternating siltstone and sandstone</td>
</tr>
</tbody>
</table>

Source: After Blanchflower, 2008.
Figure 6.2 Regional Stratigraphic Column

6.2 GEOLOGY, STRUCTURE, AND ALTERATION OF THE SNOWFIELD DEPOSIT

The Snowfield deposit (see typical cross section Figure 6.5) is underlain by Lower Jurassic andesitic volcanic rocks that correlate with the ‘Upper Andesite’ unit of the Unuk River formation from the lower portion of the Hazelton Group (Alldrick and Britton, 1991).

The rocks that host the gold mineralization at the Project have been subjected to a lower greenschist facies grade of metamorphism with subsequent pervasive hydrothermal alteration, making the identification of protoliths difficult. Based upon geological mapping, petrographic studies, and recent drilling results, the mineralized rocks are interpreted to be a marine volcanic back-arc sequence forming a moderate north-westerly-dipping sequence of predominantly andesitic autochthonous breccia flow, lithic, crystal, and lapilli tuff.

Porphyritic quartz-syenite is exposed approximately three km west of the Snowfield Zone where it occurs in the upper plate of the Sulphurets thrust fault. A U-Pb age date of 192.7 ± 5.4/-3.6 Ma was obtained for this felsic intrusive, which is believed to underlie the Snowfield Zone and surrounding area to the west and north at depth.

6.2.1 Structure

The Sulphurets Thrust Fault, situated approximately one km west of the Property, is a west-dipping, northerly-striking structure that places Triassic Stuhini Group over the Lower Jurassic Hazelton Group rocks, part of the regional Late Mesozoic Skeena fold and thrust belt (Margolis, 1993).

The Mitchell Thrust Fault, located on the south side of the Mitchell Valley, separates potassically-altered quartz-syenite and other rocks above it from dominantly sericitically altered rocks and the Mitchell quartz stockwork beneath. This low-angle thrust fault appears to have been transferred to a higher-angle, oblique-slip movement along the Snowfield Fault, producing a horst within the Snowfield Zone.

Two northerly-striking, post-mineralization high-angle faults occurring east and west of the Snowfield Zone are called the Brucejack and Snowfield Faults respectively (Figure 6.1). The left-lateral and eastside-down, vertical Snowfield Fault was apparently formed during southeast-directed thrusting which produced the Mitchell and Sulphurets thrusts (Margolis, 1993). The Brucejack Fault is a more regional northerly-striking structure that transects the Sulphurets district, truncating geological features and influencing topography.

6.2.2 Alteration

The Snowfield Zone is situated within the eastern of two structural blocks separated by the northerly-trending Snowfield Fault. The eastern, down-dropped block of volcanic rocks has been pervasively altered to advanced argillic facies, has a quartz stockwork zone, and is rarely affected by potassic alteration east of the fault. In contrast, the western block which has been uplifted has potassic, sericitic and rare advanced argillic alteration accompanying the quartz-syenite intrusion.
According to Margolis (1993), chlorite-rich quartz-sericite-pyrite alteration of the andesitic volcanic rocks is pervasive east of the Snowfield Fault and throughout the Snowfield Zone, in contrast to the chlorite-poor alteration west of the fault. The altered host rocks contain abundant disseminations and fracture filling molybdenite and tourmaline which are cut by pyrophyllite veins in the advanced argillic zone and by massive pyrite veins elsewhere in the area. There is evidence that the quartz-sericite-pyrite-chlorite alteration replaced potassic alteration which was rich in hydrothermal biotite, magnetite, and chalcopyrite (Margolis, 1993). Beyond the known limits of the Snowfield Zone, the quartz-sericite-pyrite-chlorite altered rocks are poorly mineralized, except for molybdenite.
Figure 6.4 Typical Cross Section 424911E through Snowfield Deposit
Figure 6.5 Cross Section 424811E through Snowfield Deposit showing Gold Values
Figure 6.6 Cross Section 424811E through Snowfield Deposit showing Copper Values
Figure 6.7 Cross Section 424811E through Snowfield Deposit showing Molybdenum Values
7.0 DEPOSIT TYPES

Deposits such as Snowfield, Kerr, and Mitchell are best described as gold-enriched copper porphyry systems.

The Snowfield deposit is a near-surface, low grade, bulk tonnage, and porphyry-style gold deposit that has additional silver, copper, molybdenum and rhenium mineralization. The gold mineralization at the Snowfield deposit, as well as the copper-gold + molybdenum porphyry-style mineralization of the Mitchell deposit that is currently being tested by Seabridge on the adjacent Kerr-Sulphurets property to the north and west, is interpreted to be genetically related to one or more Jurassic-age alkaline intrusions (Alldrick and Britton 1991; Margolis 1993).

The following deposit description is taken from the “Geology of Canadian Mineral Deposit Types”, edited by O.R. Eckstrand, W.D. Sinclair, and R.I. Thorpe.

7.1 PORPHYRY DEPOSITS – SNOWFIELD

Geological Features

The following features serve to distinguish porphyry deposits from other types of deposits:

- Large size;
- Widespread alteration;
- Structurally controlled ore minerals superimposed on pre-existing host rocks;
- Distinctive metal associations;
- Spatial, temporal, and genetic relationships to porphyritic epizonal and mesozonal intrusions.

Genetic Model

The most applicable model for porphyry deposits is a magmatic hydrothermal one, or variations thereon, in which the ore metals were derived from temporally and genetically related intrusions (figure 7.1). Large polyphase hydrothermal systems developed within and above genetically related intrusions and commonly interacted with meteoric fluids (and possibly seawater) on their tops and peripheries. During the waning stages of hydrothermal activity, the magmatic-hydrothermal systems collapsed inward upon themselves and were replaced by waters of dominantly meteoric origin. Redistribution, and possibly further concentration of metals, occurred in some deposits during these waning stages.

Variations of the magmatic-hydrothermal model for porphyry deposits, commonly referred to as the orthomagmatic model, have been presented by numerous authors such as Burnham (1967, 1979), Phillips (1973), and Whitney (1975, 1984). These authors envisaged felsic and intermediate magma emplacement at high levels in the crust and border zone crystallization along the walls and roof of the magma chamber. As a consequence of this crystallization, supersaturation of volatile phases occurred within the magma, resulting in separation of volatiles due to resurgent or second boiling (Figure 7.2). Ore metals and many other components were strongly partitioned into these volatile phases, which became concentrated in the carapace of the magma chamber. When increasing fluid pressures exceeded lithostatic pressures and the tensile strength of the overlying rocks, fracturing of these rocks occurred, permitting rapid escape of
hydrothermal fluids into newly created open space. A fundamental control on ore deposition was
the pronounced adiabatic cooling of the ore fluids due to their sudden expansion into the fracture
and/or breccia systems, thus the importance of structural control on ore deposition in porphyry
deposits.

Some modification of the orthomagmatic model is likely required for at least some, if not most,
porphyry deposits, in view of studies by Shannon et al. (1982), Carten et al. (1988a), and
Kirkham and Sinclair (1988). These authors concluded that, in several deposits, the underlying
genetically related intrusions were largely liquid in their carapaces until ore formation was
essentially complete. According to this model, volatiles that streamed through large volumes of
magma, stripping it of its metal content, accumulated in small cupolas at the top of the magma
chambers. Wall rocks of the intrusions and deposits are not considered to be viable sources for
the metals in porphyry deposits.

Figure 7.1 Schematic diagram of a porphyry Cu system in the root zone of an andesitic
stratovolcano

Note: Figure shows mineral zonation and possible relationship to skarn, manto, "mesothermal" or "intermediate"
precious-metal and base-metal vein and replacement, and epithermal precious-metal deposits (Kirkham and
Sinclair, 1995).
Figure 7.2 Schematic diagram of a convecting magma that is feeding a small subvolcanic intrusion below a porphyry deposit

Note: (modified from Shinohara et al., 1995). Fluid separation from the degassing magma occurs near the top of the magma column, forming pockets of magmatic-hydrothermal fluid in which comb-quartz layers grow inward from intrusion margins. Mineralized vein and fracture stockworks form when the fluid pressure exceeds lithostatic pressure and tensile strength of the surrounding rocks.
8.0 MINERALIZATION

The gold mineralization at the Snowfield deposit is hosted by schistose, pervasively altered (quartz-sericite-chlorite) volcanic and volcaniclastic rocks that contain 1% to 5% disseminated pyrite, minor disseminations, veinlets of tourmaline, molybdenite, and abundant younger calcite veinlets.

Gold mineralization occurs as microscopic grains (less than 30 μm) of electrum that are encased within fine-grained, pervasively disseminated pyrite in close association with trace amounts of galena and sphalerite (Margolis, 1993). Other associated minerals within the gold-mineralized zone include: tetrahedrite-tennantite, barite, acanthite, minor Mn-rich calcite, and rare chalcopyrite. Minute clusters, approximately 75 μm, of pyrite and rutile (+ barite) are also observed within the gold-bearing mineralization (Margolis, 1993).

Molybdenite mineralization appears to have been emplaced during an earlier hydrothermal event. Pyrite-tetrahedrite veinlets from the gold-bearing mineral assemblage are observed cutting molybdenite veinlets. Weakly disseminated and minor fracture filling molybdenite mineralization is widespread and common throughout the Snowfield Deposit and nearby area. Fine-grained tourmaline crystals are often associated with molybdenite in quartz veinlets (Margolis, 1993).

Hydrothermal alteration within the Snowfield Deposit includes quartz-sericite-pyrite with varying amounts of chlorite, calcite, and garnet. The dark reddish-brown, rounded garnets are less than 7 mm and appear to have been crystallized during the gold mineralizing event(s). They are probably of hydrothermal origin as they are well fractured and exhibit deformational features consistent with the tectonic event that caused the deformation, alteration, and schistosity of the host rocks (Margolis, 1993).

Chalcopyrite mineralization with minor sphalerite and galena increases at depth coincident with a change in lithology from the medium-grained andesitic tuff to fine-grained ash-crystal-lithic tuff (McCrea, 2007). Increasing base metal mineralization with depth may indicate possible porphyry-style copper mineralization associated with the cupola of a buried alkalic intrusion (Margolis, 1993).
9.0 EXPLORATION

There was no other exploration work undertaken on the Snowfield property in 2010 apart from
diamond drilling, which is described in detail in Section 10.0.
10.0 DRILLING

The 2010 drill program at Snowfield included a total 17,976 meters of drilling, completed in 46 drill holes. Highlights of the program included discovery of a new band of relatively high grade copper mineralization on the south-east flank of the deposit and extension of the gold dominant Upper Snowfield further to the south than previously interpreted. Both of these zones are in areas of the proposed open pit that was previously classified as waste, (see Figure 10.1). Table 10.1 presents a list of the best intersections from 2010.

Drilling contractors in 2010 were Radius Drilling and Matrix Drilling. The average number of drill rigs on site at any given time was seven, with a maximum number of nine.

Down-hole, E-Z shot surveying of all holes showed that deviation on azimuths was a maximum of 15° for a 700 m long hole, with little movement on dip. Core recovery was excellent at ±95%.

Drill hole collars were surveyed toward the end of the drilling campaign by McElhanney using a differential GPS.

Crews were de-mobilized from the project for the winter season on September 29. Most portable equipment was stored in one of several winterized buildings on site. All of the tents were flown back to Stewart for storage, as well as the core from a number of key drill holes.
Figure 10.1 2010 Snowfield Diamond Drill Plan
Table 10.1

2010 Significant Drill Intersections

<table>
<thead>
<tr>
<th>Hole</th>
<th>From (m)</th>
<th>To (m)</th>
<th>Interval (m)</th>
<th>Au (g/t)</th>
<th>Cu (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MZ-75</td>
<td>106.5</td>
<td>139.0</td>
<td>32.5</td>
<td>0.87</td>
<td>0.14</td>
</tr>
<tr>
<td>MZ-77</td>
<td>23.6</td>
<td>50.7</td>
<td>27.1</td>
<td>0.64</td>
<td>0.07</td>
</tr>
<tr>
<td>MZ-81</td>
<td>2.1</td>
<td>70.5</td>
<td>68.4</td>
<td>0.48</td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td>200.7</td>
<td>226.2</td>
<td>25.5</td>
<td>0.52</td>
<td>0.01</td>
</tr>
<tr>
<td>MZ-82</td>
<td>32.5</td>
<td>127.5</td>
<td>95.0</td>
<td>0.78</td>
<td>0.03</td>
</tr>
<tr>
<td></td>
<td>282.0</td>
<td>298.1</td>
<td>16.1</td>
<td>0.57</td>
<td>0.02</td>
</tr>
<tr>
<td>MZ-85</td>
<td>2.9</td>
<td>334.8</td>
<td>331.9</td>
<td>0.55</td>
<td>0.04</td>
</tr>
<tr>
<td>MZ-86</td>
<td>20.0</td>
<td>69.5</td>
<td>49.5</td>
<td>0.47</td>
<td>0.09</td>
</tr>
<tr>
<td></td>
<td>92.5</td>
<td>107.5</td>
<td>15.0</td>
<td>0.58</td>
<td>0.10</td>
</tr>
<tr>
<td></td>
<td>402.0</td>
<td>437.9</td>
<td>35.9</td>
<td>0.68</td>
<td>0.07</td>
</tr>
<tr>
<td>MZ-87</td>
<td>26.5</td>
<td>94.0</td>
<td>67.5</td>
<td>0.72</td>
<td>0.04</td>
</tr>
<tr>
<td></td>
<td>118.9</td>
<td>213.5</td>
<td>94.6</td>
<td>0.71</td>
<td>0.08</td>
</tr>
<tr>
<td>MZ-88</td>
<td>14.4</td>
<td>251.5</td>
<td>237.1</td>
<td>0.67</td>
<td>0.06</td>
</tr>
<tr>
<td>MZ-90</td>
<td>85.0</td>
<td>370.0</td>
<td>285.0</td>
<td>0.46</td>
<td>0.28</td>
</tr>
<tr>
<td>MZ-94</td>
<td>121.5</td>
<td>193.5</td>
<td>72.0</td>
<td>0.73</td>
<td>0.09</td>
</tr>
<tr>
<td>MZ-95</td>
<td>3.3</td>
<td>292.0</td>
<td>288.7</td>
<td>1.02</td>
<td>0.21</td>
</tr>
<tr>
<td>MZ-96</td>
<td>0.9</td>
<td>175.4</td>
<td>174.5</td>
<td>1.14</td>
<td>0.02</td>
</tr>
<tr>
<td>MZ-97</td>
<td>4.0</td>
<td>221.5</td>
<td>217.5</td>
<td>0.84</td>
<td>0.12</td>
</tr>
<tr>
<td></td>
<td>289.5</td>
<td>407.0</td>
<td>117.5</td>
<td>0.54</td>
<td>0.06</td>
</tr>
<tr>
<td>MZ-100</td>
<td>68.5</td>
<td>177.0</td>
<td>108.5</td>
<td>0.73</td>
<td>0.10</td>
</tr>
<tr>
<td></td>
<td>295.5</td>
<td>387.0</td>
<td>91.5</td>
<td>0.61</td>
<td>0.09</td>
</tr>
<tr>
<td>MZ-103</td>
<td>1.8</td>
<td>236.0</td>
<td>234.2</td>
<td>0.62</td>
<td>0.05</td>
</tr>
<tr>
<td>MZ-104</td>
<td>153.0</td>
<td>222.0</td>
<td>69.0</td>
<td>0.48</td>
<td>0.27</td>
</tr>
<tr>
<td>MZ-105</td>
<td>1.5</td>
<td>114.0</td>
<td>112.5</td>
<td>0.35</td>
<td>0.30</td>
</tr>
<tr>
<td>MZ-107</td>
<td>116.0</td>
<td>137.0</td>
<td>21.0</td>
<td>0.57</td>
<td>0.05</td>
</tr>
<tr>
<td>MZ-108</td>
<td>4.0</td>
<td>102.0</td>
<td>98.0</td>
<td>0.55</td>
<td>0.06</td>
</tr>
<tr>
<td></td>
<td>120.0</td>
<td>150.0</td>
<td>30.0</td>
<td>0.54</td>
<td>0.05</td>
</tr>
<tr>
<td>MZ-109</td>
<td>0.9</td>
<td>16.0</td>
<td>15.1</td>
<td>0.84</td>
<td>0.04</td>
</tr>
<tr>
<td>MZ-110</td>
<td>91.0</td>
<td>122.5</td>
<td>31.5</td>
<td>0.45</td>
<td>0.02</td>
</tr>
<tr>
<td>MZ-111</td>
<td>26.5</td>
<td>135.5</td>
<td>109.0</td>
<td>0.72</td>
<td>0.50</td>
</tr>
<tr>
<td></td>
<td>171.5</td>
<td>248.0</td>
<td>76.5</td>
<td>0.18</td>
<td>0.15</td>
</tr>
<tr>
<td>MZ-113</td>
<td>53.0</td>
<td>131.0</td>
<td>78.0</td>
<td>0.98</td>
<td>0.04</td>
</tr>
<tr>
<td>MZ-114</td>
<td>19.8</td>
<td>201.5</td>
<td>181.7</td>
<td>0.56</td>
<td>0.04</td>
</tr>
<tr>
<td>MZ-115</td>
<td>68.8</td>
<td>127.3</td>
<td>58.5</td>
<td>0.56</td>
<td>0.02</td>
</tr>
<tr>
<td>MZ-116</td>
<td>2.4</td>
<td>85.0</td>
<td>82.6</td>
<td>1.45</td>
<td>0.44</td>
</tr>
<tr>
<td></td>
<td>170.5</td>
<td>306.6</td>
<td>136.1</td>
<td>0.17</td>
<td>0.19</td>
</tr>
<tr>
<td>MZ-117</td>
<td>1.4</td>
<td>145.5</td>
<td>144.1</td>
<td>0.41</td>
<td>0.16</td>
</tr>
<tr>
<td></td>
<td>206.0</td>
<td>240.5</td>
<td>34.5</td>
<td>0.44</td>
<td>0.13</td>
</tr>
<tr>
<td>MZ-118</td>
<td>2.5</td>
<td>34.0</td>
<td>31.5</td>
<td>0.22</td>
<td>0.12</td>
</tr>
<tr>
<td></td>
<td>94.0</td>
<td>113.5</td>
<td>19.5</td>
<td>0.29</td>
<td>0.15</td>
</tr>
<tr>
<td></td>
<td>137.5</td>
<td>172.0</td>
<td>34.5</td>
<td>0.49</td>
<td>0.09</td>
</tr>
<tr>
<td>MZ-119</td>
<td>19.0</td>
<td>45.5</td>
<td>26.5</td>
<td>0.13</td>
<td>0.12</td>
</tr>
<tr>
<td></td>
<td>70.0</td>
<td>156.0</td>
<td>86.0</td>
<td>0.05</td>
<td>0.15</td>
</tr>
<tr>
<td></td>
<td>197.0</td>
<td>284.0</td>
<td>87.0</td>
<td>0.33</td>
<td>0.18</td>
</tr>
</tbody>
</table>
11.0 SAMPLING METHOD AND APPROACH

At the end of each drill shift all core was transported by helicopter to the handling, logging, and storage facility on site. Prior to any geotechnical and geological logging, the entire drill core was photographed in detail with the digital colour photographic images for each interval of core filed with the digital geological logs.

A trained geo-technician recorded the core recovery and rock quality data for each measured drill run. All lithological, structural, alteration, and mineralogical features of the drill core were observed and recorded during the geological logging procedure. This information was later transcribed into the computer using a program that was compatible with Gemcom software.

The geologist responsible for logging assigned drill core sample intervals with the criteria that the intervals did not cross geologic contacts and the maximum sample length was two metres. Within any geologic unit, sample intervals of 1.5 m long could be extended or reduced to coincide with any geologic contact. Sample lengths were rarely greater than two metres or less than 0.5 m, and they averaged 1.52 m long.

Upon completion of the geological logging, the samples were sawn in half lengthwise. One-half of the drill core was placed in a plastic sample bag and the other half was returned to its original position in the core box. The sample bags were consolidated into larger shipping containers and delivered to the assay laboratory.

It is the author’s opinion that the core logging procedures employed are thorough and provide sufficient geotechnical and geological information. There is no apparent drilling or recovery factor that would materially impact the accuracy and reliability of the drilling results.
12.0 SAMPLE PREPARATION, ANALYSES AND SECURITY

The 2010 program on the Snowfield Project used ALS Chemex as the principal laboratory. The samples that were originally sent to ALS Chemex in Terrace, BC, for sample preparation were then forwarded to the ALS Chemex facility in Vancouver, BC, for analysis.

ALS Chemex Laboratory

ALS Chemex is an internationally recognized minerals testing laboratory operating in 16 countries and has an ISO 9001:2000 certification. The laboratory in Vancouver has also been accredited to ISO 17025 standards for specific laboratory procedures by the Standards Council of Canada (SCC).

Samples at ALS Chemex were crushed to 70% passing 2 mm, (-10 mesh). Samples were riffle split and 500 g were pulverized to 85% passing 75 μm (-200 mesh). The remaining coarse reject material was returned to Pretivm for storage in their Smithers warehouse for possible future use.

Gold was determined using fire assay on a 30 g aliquot with an atomic absorption (AA) finish. Copper was determined using four acid digest with either inductively coupled plasma atomic emission spectroscopy (ICP-AES) or AA analysis. In addition, a 33 element package was completed using a four acid digest and ICP-AES analysis, which included the silver, molybdenum, and rhenium.

It is the author’s opinion that the sample preparation, security, and analytical procedures are satisfactory.
13.0 DATA VERIFICATION

13.1 SITE VISIT AND INDEPENDENT SAMPLING 2010

The Snowfield Property was visited by Mr. Fred Brown, CPG, Pr.Sci.Nat., from September 3 to 5, 2010. Independent verification sampling was done on diamond drill core, with ten samples distributed in ten holes collected for assay. An attempt was made to sample intervals from a variety of low and high-grade material. The chosen sample intervals were then sampled by taking the remaining half-split core. The samples were documented, bagged, and sealed with packing tape and were brought by Mr. Brown to ALS Chemex in Terrace, British Columbia for preparation. From there, the pulps were shipped to ALS Chemex in Vancouver, British Columbia for analysis.

At no time, prior to the time of sampling, were any employees or other associates of Pretivm advised as to the location or identification of any of the samples to be collected.

A comparison of the P&E independent sample verification results for gold, copper, silver, molybdenum and rhenium versus the original assay results can be seen in Figure 13.1 to Figure 13.5. Only certain samples were analyzed by Pretivm for rhenium, therefore only three samples were available for comparison.

Figure 13.1 P&E Independent Site Visit Sample Results for Gold
Figure 13.2 P&E Independent Site Visit Sample Results for Copper

![Graph of Copper](image)

Figure 13.3 P&E Independent Site Visit Sample Results for Silver

![Graph of Silver](image)
13.2 PRETIVM QUALITY CONTROL

The QA/QC program was maintained throughout the 2010 drilling. Certified reference material standards named CDN ME-4 and CDN ME-12 were purchased from CDN Resource Labs in Langley, British Columbia. Both of these standards were certified for gold, silver and copper. One standard sample, one blank sample and one field duplicate sample (1/4 split core) were inserted every 20 samples. In addition, the lab inserted their own internal QC, which included standards, blanks and both coarse reject and pulp duplicates.
13.3 2010 DATA VERIFICATION RESULTS

The QC program was monitored on a real-time basis by Pretivm throughout 2010 and any standards failing the QC protocols were re-run. The author received all the data for the 2010 drilling and verified the performance of the standards, blanks and duplicates.

13.3.1 Performance of Certified Reference Material

Standard ME-4 had 338 data points for gold, copper and silver. None of the data points fell outside three standard deviations from the mean, though several were between two and three standard deviations. All data points for all elements passed the QC and no action was required.

The ME-12 standard had 322 data points for gold, copper and silver. All data points passed the QC.

13.3.2 Performance of Blank Material

The blank material used for the 2008, 2009 and 2010 drill programs was ¾” crushed granite sold by Imasco Minerals as landscape material.

There were 662 blank samples analyzed during the 2010 program. The average gold grade in the blanks was 0.003 g/t Au. One value was of concern, however upon investigation the high value was deemed a misallocation, and no further action was required.

For copper, the average grade of the blank material was 0.0008%, with a high value of 0.007%. One hundred thirty one values were greater than the upper threshold of ten times detection limit, which was 10 ppm Cu. Pretivm re-ran many of the over-limit samples. The author considers that none of the gold or copper failures had any impact on the metal value of the deposit.

13.3.3 2010 Duplicate Statistics

For the 2010 drill program, there were 664 field core duplicate pairs, 456 pulp duplicate pairs for gold and 345 pairs for copper. There were no coarse reject duplicates done.

Data for the gold duplicate types were graphed using simple scatter graphs. Even at the field duplicate level, gold showed almost a 1:1 correlation. At the pulp level the correlation was also 1:1.

The copper duplicates yielded a 1:1 correlation at both the field and pulp duplicate level.

13.3.4 Check Samples Assayers Canada

Approximately 510 of the 2010 pulps from Snowfield were sent to Assayers Canada Lab (“Assayers”) in Vancouver as a check on the principal lab. Results were graphed for gold, silver and copper and precision was acceptable, indicating the principal lab is doing a satisfactory job.

The author considers that the data used in this resource estimate are of excellent quality.
14.0 ADJACENT PROPERTIES

Within the adjacent KSM property there are three notable copper-gold mineral deposits, namely Kerr, Mitchell, and Sulphurets. In 2010, a fourth deposit, name the Iron Cap Zone was discovered. All of these occurrences are situated within the claim holdings currently owned and operated by Seabridge.

In June 2009, a Preliminary Assessment estimated a 30-year mine life recovering 19.3 M oz of gold, 5.3 B lb of copper, 2.8 M oz of silver, and 1.9 M lb of molybdenum. In April 2010, Seabridge published the results of a subsequent Pre-feasibility Study. These results indicate an estimated Reserve statement as shown in Table 14.1. All information for this section has been taken from the Seabridge website at www.seabridgegold.net.

<table>
<thead>
<tr>
<th>Zone</th>
<th>Reserve</th>
<th>Mt</th>
<th>In Situ Average Grades</th>
<th>Contained Metal</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Au (g/t)</td>
<td>Cu (%)</td>
</tr>
<tr>
<td>Mitchell</td>
<td>Proven</td>
<td>570.6</td>
<td>0.64</td>
<td>0.17</td>
</tr>
<tr>
<td></td>
<td>Probable</td>
<td>764.8</td>
<td>0.59</td>
<td>0.16</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>1,335.4</td>
<td>0.61</td>
<td>0.16</td>
</tr>
<tr>
<td>Sulphurets</td>
<td>Probable</td>
<td>142.2</td>
<td>0.61</td>
<td>0.28</td>
</tr>
<tr>
<td>Kerr</td>
<td>Probable</td>
<td>125.1</td>
<td>0.28</td>
<td>0.48</td>
</tr>
<tr>
<td>Totals</td>
<td>Proven</td>
<td>570.6</td>
<td>0.64</td>
<td>0.17</td>
</tr>
<tr>
<td></td>
<td>Probable</td>
<td>1,032.1</td>
<td>0.56</td>
<td>0.22</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>1,602.7</td>
<td>0.59</td>
<td>0.20</td>
</tr>
</tbody>
</table>

On February 8, 2011, Seabridge announced an Indicated resource containing 5.1 million ounces of gold and 1.7 billion pounds of copper for the Iron Cap Zone at its 100% owned KSM project. The Iron Cap Zone is immediately adjacent to the Mitchell deposit. The Indicated resource is flanked by a halo of Inferred resources containing an additional 3.4 million ounces of gold and 1.3 billion pounds of copper. The Iron Cap resource estimate was prepared by Resource Modeling Inc. ("RMI") of Stites, Idaho and will be incorporated into an updated Preliminary Feasibility Study ("PFS") scheduled for completion in April 2011. The NI 43-101 compliant global resource estimate is presented in Table 14.2 below.
Table 14.2

2011 Iron Cap Mineral Resource Estimate at 0.50 g/t Au Equivalent Cut-off

<table>
<thead>
<tr>
<th>Resource Category</th>
<th>Tonnes</th>
<th>Au (g/t)</th>
<th>Au (ounces)</th>
<th>Cu (%)</th>
<th>Cu (millions of lbs.)</th>
<th>Ag (g/t)</th>
<th>Ag (ounces)</th>
<th>Moly (ppm)</th>
<th>Moly (millions of lbs.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indicated</td>
<td>361,700,000</td>
<td>0.44</td>
<td>5,117,000</td>
<td>0.21</td>
<td>1,674</td>
<td>5.4</td>
<td>62,796,000</td>
<td>47</td>
<td>37.5</td>
</tr>
<tr>
<td>Inferred</td>
<td>297,300,000</td>
<td>0.36</td>
<td>3,441,000</td>
<td>0.20</td>
<td>1,310</td>
<td>3.9</td>
<td>37,278,000</td>
<td>60</td>
<td>39.3</td>
</tr>
</tbody>
</table>

The QPs for this report have not verified the information concerning Seabridge, and the information is not necessarily indicative of the mineralization on the Snowfield property.
15.0 MINERAL PROCESSING AND METALLURGICAL TESTING

Five holes were drilled for metallurgical test work in 2010, however there are currently no changes to report regarding any further advances in the mineral processing and metallurgical testing.
16.0 SNOWFIELD MINERAL RESOURCE ESTIMATE

16.1 INTRODUCTION

The mineral resource estimates presented herein have been prepared following the guidelines of the Canadian Securities Administrators’ National Instrument 43-101 and Form 43-101F1 and in conformity with generally accepted “CIM Estimation of Mineral Resource and Mineral Reserves Best Practices” guidelines. Mineral resources have been classified in accordance with the “CIM Standards on Mineral Resources and Reserves: Definition and Guidelines” (2005):

- Inferred Mineral Resource: “An ‘Inferred Mineral Resource’ is that part of a mineral resource for which quantity and grade or quality can be estimated on the basis of geological evidence and limited sampling and reasonably assumed, but not verified, geological and grade continuity. The estimate is based on limited information and sampling gathered through appropriate techniques from locations such as outcrops, trenches, pits, workings and drillholes.”
- Indicated Mineral Resource: “An ‘Indicated Mineral Resource’ is that part of a mineral resource for which quantity, grade or quality, densities, shape and physical characteristics, can be estimated with a level of confidence sufficient to allow the appropriate application of technical and economic parameters, to support mine planning and evaluation of the economic viability of the deposit. The estimate is based on detailed and reliable exploration and testing information gathered through appropriate techniques from locations such as outcrops, trenches, pits, workings and drillholes that are spaced closely enough for geological and grade continuity to be reasonably assumed.”
- Measured Mineral Resource: “A ‘Measured Mineral Resource’ is that part of a mineral resource for which quantity, grade or quality, densities, shape, and physical characteristics are so well established that they can be estimated with confidence sufficient to allow the appropriate application of technical and economic parameters, to support production planning and evaluation of the economic viability of the deposit. The estimate is based on detailed and reliable exploration, sampling and testing information gathered through appropriate techniques from locations such as outcrops, trenches, pits, workings and drillholes that are spaced closely enough to confirm both geological and grade continuity.”

Mineral resources are not mineral reserves and do not have demonstrated economic viability. There is no guarantee that all or any part of the mineral resource will be converted into mineral reserve. Confidence in the estimate of Inferred Mineral Resources is insufficient to allow the meaningful application of technical and economic parameters or to enable an evaluation of economic viability worthy of public disclosure.

All mineral resource estimation work reported herein was carried out by FH Brown, CPG, Pr.Sci.Nat. and Eugene Puritch, P.Eng., of P&E Mining Consultants Inc., independent Qualified Persons in terms of NI43-101. This mineral resource estimate is based on information and data supplied by Silver Standard Resources Inc. A draft copy of this report was reviewed by Pretivm for factual errors.
Mineral resource modeling and estimation were carried out using the commercially available GEMS Gemcom v5.23 and Snowden Supervisor v7.10.11 software programs. Pit shell optimization was carried out using Whittle Four-X Single Element v1.10.

The effective date of this mineral resource estimate is February 18, 2011.

16.2 PREVIOUS RESOURCE ESTIMATES

Subsequent to the initial mineral resource estimate undertaken on the Snowfield Project in 2006 and updated mineral resource estimate dated April 21, 2008 was prepared by Minorex Consulting Ltd1. The mineral resource estimate reported a Measured and Indicated mineral resource of 3.08 million ounces Au and an Inferred mineral resource of 0.47 million ounces Au in-situ (Table 16.1) using a cut-off grade of 0.1g/t Au. The estimate was based on the results of fifty-one drillholes and fifteen sample trenches, and used a global bulk density of 2.82t/m³.

<table>
<thead>
<tr>
<th>Class</th>
<th>Tonnes x M</th>
<th>Au g/t</th>
<th>Au oz x 1000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measured</td>
<td>1.5</td>
<td>2.18</td>
<td>101.5</td>
</tr>
<tr>
<td>Indicated</td>
<td>77.1</td>
<td>1.20</td>
<td>2,975.6</td>
</tr>
<tr>
<td>Measured + Indicated</td>
<td>78.6</td>
<td>1.22</td>
<td>3,077.1</td>
</tr>
<tr>
<td>Inferred</td>
<td>14.4</td>
<td>1.01</td>
<td>466.2</td>
</tr>
</tbody>
</table>

(1) Note: the above mineral resource estimate was prepared under the supervision of a Qualified Person as defined by NI 43-101. P&E has not independently verified the mineral resource estimate.

A mineral resource estimate dated January 31, 2009 for the Snowfield Deposit was prepared by P&E Mining Consultants Inc.2. The mineral resource estimate reported a Measured and Indicated mineral resource of 4.36 million ounces Au and an Inferred mineral resource of 14.28 million ounces Au (Table 16.2) using a cut-off of 0.5g/t AuEq. The estimate was based on the results of 113 drillholes and constrained within an optimized conceptual pit shell.

<table>
<thead>
<tr>
<th>Class</th>
<th>Tonnes x M</th>
<th>Au g/t</th>
<th>Au oz x M</th>
<th>Ag g/t</th>
<th>Ag ozs x M</th>
<th>Cu %</th>
<th>Mo ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measured</td>
<td>31.9</td>
<td>1.49</td>
<td>1.53</td>
<td>1.4</td>
<td>1.47</td>
<td>0.03</td>
<td>140</td>
</tr>
<tr>
<td>Indicated</td>
<td>102.8</td>
<td>0.86</td>
<td>2.83</td>
<td>1.6</td>
<td>5.21</td>
<td>0.07</td>
<td>110</td>
</tr>
<tr>
<td>Measured + Indicated</td>
<td>134.7</td>
<td>1.01</td>
<td>4.36</td>
<td>1.5</td>
<td>6.68</td>
<td>0.06</td>
<td>120</td>
</tr>
<tr>
<td>Inferred</td>
<td>661.8</td>
<td>0.67</td>
<td>14.28</td>
<td>1.8</td>
<td>39.00</td>
<td>0.12</td>
<td>80</td>
</tr>
</tbody>
</table>

A mineral resource estimate dated December 1, 2009 for the Snowfield Deposit was prepared by P&E Mining Consultants Inc.3. The mineral resource estimate reported a Measured and Indicated mineral resource of 19.77 million ounces Au and an Inferred mineral resource of 10.05 million ounces Au (Table 16-3) using a cut-off of 0.35g/t AuEq. The estimate was based on the results of 141 drillholes and constrained within an optimized conceptual pit shell.

Table 16.3

<table>
<thead>
<tr>
<th>Class</th>
<th>Tonnes x M</th>
<th>Au g/t</th>
<th>Au ozs x M</th>
<th>Ag g/t</th>
<th>Ag ozs x M</th>
<th>Cu %</th>
<th>Mo ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measured</td>
<td>136.9</td>
<td>0.94</td>
<td>4.14</td>
<td>1.7</td>
<td>7.7</td>
<td>0.11</td>
<td>99</td>
</tr>
<tr>
<td>Indicated</td>
<td>724.8</td>
<td>0.67</td>
<td>15.63</td>
<td>1.9</td>
<td>43.2</td>
<td>0.12</td>
<td>91</td>
</tr>
<tr>
<td>Measured + Indicated</td>
<td>861.7</td>
<td>0.71</td>
<td>19.77</td>
<td>1.8</td>
<td>50.9</td>
<td>0.12</td>
<td>92</td>
</tr>
<tr>
<td>Inferred</td>
<td>948.9</td>
<td>0.33</td>
<td>10.05</td>
<td>1.4</td>
<td>43.7</td>
<td>0.07</td>
<td>81</td>
</tr>
</tbody>
</table>

An updated mineral resource estimate for the Snowfield Deposit dated July 27, 2010 was prepared by P&E Mining Consultants Inc.4. The mineral resource estimate reported a Measured and Indicated mineral resource of 22.04 million ounces Au and an Inferred mineral resource of 10.99 million ounces Au (Table 16.4) using a cut-off of 0.30g/t AuEq and incorporating Rhenium in the estimate. The estimate was based on the results of 141 drillholes and constrained within an optimized conceptual pit shell.

Table 16.4

<table>
<thead>
<tr>
<th>Class</th>
<th>Tonnes x M</th>
<th>Au g/t</th>
<th>Au ozs x M</th>
<th>Ag g/t</th>
<th>Ag ozs x M</th>
<th>Cu %</th>
<th>Mo ppm</th>
<th>Re g/t</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measured</td>
<td>143.7</td>
<td>0.83</td>
<td>3.85</td>
<td>1.57</td>
<td>7.27</td>
<td>0.08</td>
<td>100</td>
<td>0.62</td>
</tr>
<tr>
<td>Indicated</td>
<td>951.6</td>
<td>0.60</td>
<td>18.19</td>
<td>1.78</td>
<td>54.38</td>
<td>0.11</td>
<td>87</td>
<td>0.47</td>
</tr>
<tr>
<td>Measured + Indicated</td>
<td>1095.3</td>
<td>0.63</td>
<td>22.04</td>
<td>1.75</td>
<td>61.65</td>
<td>0.11</td>
<td>89</td>
<td>0.49</td>
</tr>
<tr>
<td>Inferred</td>
<td>847.2</td>
<td>0.40</td>
<td>10.99</td>
<td>1.53</td>
<td>41.62</td>
<td>0.07</td>
<td>82</td>
<td>0.33</td>
</tr>
</tbody>
</table>

16.3 SNOWFIELD SAMPLE DATABASE

Sample data were provided by Silver Standard in the form of ASCII text files, Excel spreadsheets and Access databases.

P&E prepared a Gemcom format Access database from the data supplied by Silver Standard. The 190 drillhole and fifteen sampling trench records contain collar, survey, lithology, alteration and

assay data (Table 16.5). Assay data fields consist of drillhole ID, downhole interval distances, sample number, and Au, Ag, Cu and Mo grade fields. All data are in metric units and grid coordinates are in the UTM NAD27 system. Assay values equal to the lower detection limit were converted to half of the lower detection limit.

<table>
<thead>
<tr>
<th>Data Type</th>
<th>Record Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collars</td>
<td>190</td>
</tr>
<tr>
<td>Survey Records</td>
<td>1,170</td>
</tr>
<tr>
<td>Assay Records (Au)</td>
<td>46,380</td>
</tr>
</tbody>
</table>

DATABASE VALIDATION

Industry standard validation checks were completed on the supplied database, and minor corrections made. P&E typically validates a mineral resource database by checking for inconsistencies in naming conventions or analytical units, duplicate entries, interval, length or distance values less than or equal to zero, blank or zero-value assay results, out-of-sequence intervals, intervals or distances greater than the reported drill hole length, inappropriate collar locations, and missing interval and coordinate fields. No significant discrepancies with the supplied data were noted.

Downhole survey measurements were completed by Silver Standard with a Reflex EZ-Shot magnetic instrument. Measurements were taken every 100m unless drastic deviations occurred, in which case additional measurements were taken every 50m to eliminate error. Downhole survey data were examined by P&E for significant deviations.

TOPOGRAPHIC CONTROL

Silver Standard Resources contracted McElhanney Consulting Services to produce a detailed topographic plan of the Snowfield project area. This plan, drafted at 1:2000 scale and displayed with the North American Datum 1927 (NAD27), Zone 9 UTM grid, covers an area of 2.85 square kilometers, with the northwest corner of the area located at 423,900 mE, 6,265,500 mN and the southeast corner having coordinates 425,400 mE, 6,263,600 mN. To generate the topographic contours for this area, with the contour interval being at one meter, McElhanney used a LIDAR satellite image of the area along with 36 field control points that were surveyed with a Leica 500 GPS instrument during the summer months of 2006 through 2009. In addition, the locations of 101 diamond drill hole collars that were surveyed by McElhanney field crews during the four field seasons were incorporated into the database which generated the topographic contours. The McElhanney topography map was originally produced with a NAD83, Zone 9 UTM grid system and this was then converted to the NAD27 system using national Transformation Model NTv2Points. P&E compared the drillhole collar elevations to the topographic surface, and where the difference in elevation exceeded 2.00 m the collar elevation was converted to the topographic elevation.
16.6 BULK DENSITY

A total of 601 bulk density measurements were provided by Silver Standard, with an average bulk density of 2.79 t/m³. Density measurements were obtained from core samples by ALS Chemex. Bulk density summary statistics were calculated across the deposit and by domain. No trend or significant difference was observed to the bulk density data across domains, and a value of 2.79 t/m³ was applied globally (Table 16.6).

<table>
<thead>
<tr>
<th>TABLE 16.6</th>
<th>SNOWFIELD BULK DENSITY STATISTICS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Count</td>
<td>601</td>
</tr>
<tr>
<td>Minimum</td>
<td>2.34 t/m³</td>
</tr>
<tr>
<td>Maximum</td>
<td>3.17 t/m³</td>
</tr>
<tr>
<td>Average</td>
<td>2.79 t/m³</td>
</tr>
<tr>
<td>St Dev</td>
<td>0.097</td>
</tr>
</tbody>
</table>

16.7 SNOWFIELD DOMAIN MODELING

Silver Standard geologists identified two principle operational zones, the upper Snowfield and the lower Main Zone. Summary assays statistics by operational zone are tabulated in Table 16.7. Analysis of the assay data indicates that the Snowfield Zone is preferentially Au-enriched and Cu poor, while the Main Zone contains comparatively higher Cu grades on average (Figure 16.1).

<table>
<thead>
<tr>
<th>TABLE 16.7</th>
<th>SUMMARY ASSAY STATISTICS BY OPERATIONAL ZONE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cu Assays</td>
<td>Total</td>
</tr>
<tr>
<td>Samples</td>
<td>46,383</td>
</tr>
<tr>
<td>Minimum %</td>
<td>0.0001</td>
</tr>
<tr>
<td>Maximum %</td>
<td>4.090</td>
</tr>
<tr>
<td>Mean %</td>
<td>0.083</td>
</tr>
<tr>
<td>St Dev</td>
<td>1.032</td>
</tr>
</tbody>
</table>

Ag Assays	Total	Mz	Sf	Au Assays	Total	Mz	Sf
Samples	46,383	36,932	8,316	Samples	46,380	36,932	8,313
Minimum g/t	0.250	0.250	0.300	Minimum g/t	0.003	0.003	0.003
Maximum g/t	640.000	640.000	38.100	Maximum g/t	53.800	53.800	14.550
Mean g/t	1.590	1.644	1.405	Mean g/t	0.534	0.460	0.879
St Dev	4.715	5.232	1.025	St Dev	0.620	0.515	0.881
CV	2.966	3.183	0.729	CV	1.161	1.118	1.002
Skewness	82.433	75.522	9.332	Skewness	17.175	33.719	2.576
Regression coefficients were calculated by operational zone for the Au, Cu, Ag and Mo assay grades in order to assess correlations between the variables (Table 16.8). The results indicate a moderate correlation between Au and Cu for the Main Zone. Additional analysis suggests that two distinct Au populations are present: a low-grade population associated with Cu mineralization and a higher grade Au population (Figure 16.2).
TABLE 16.8
ASSAY CORRELATION MATRICES BY OPERATIONAL ZONE

<table>
<thead>
<tr>
<th></th>
<th>Total</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Au g/t</td>
<td>Ag g/t</td>
<td>Cu %</td>
<td>Mo ppm</td>
</tr>
<tr>
<td>Au</td>
<td>----</td>
<td>0.08</td>
<td>0.27</td>
<td>0.27</td>
</tr>
<tr>
<td>Ag</td>
<td>0.08</td>
<td>----</td>
<td>0.18</td>
<td>0.03</td>
</tr>
<tr>
<td>Cu</td>
<td>0.27</td>
<td>0.18</td>
<td>----</td>
<td>0.12</td>
</tr>
<tr>
<td>Mo</td>
<td>0.27</td>
<td>0.03</td>
<td>0.12</td>
<td>----</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Main Zone</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Au g/t</td>
<td>Ag g/t</td>
<td>Cu %</td>
<td>Mo ppm</td>
</tr>
<tr>
<td>Au</td>
<td>----</td>
<td>0.10</td>
<td>0.47</td>
<td>0.21</td>
</tr>
<tr>
<td>Ag</td>
<td>0.10</td>
<td>----</td>
<td>0.18</td>
<td>0.04</td>
</tr>
<tr>
<td>Cu</td>
<td>0.47</td>
<td>0.18</td>
<td>----</td>
<td>0.19</td>
</tr>
<tr>
<td>Mo</td>
<td>0.21</td>
<td>0.04</td>
<td>0.19</td>
<td>----</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Snowfield Zone</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Au g/t</td>
<td>Ag g/t</td>
<td>Cu %</td>
<td>Mo ppm</td>
</tr>
<tr>
<td>Au</td>
<td>----</td>
<td>0.15</td>
<td>-0.13</td>
<td>0.27</td>
</tr>
<tr>
<td>Ag</td>
<td>0.15</td>
<td>----</td>
<td>0.42</td>
<td>0.11</td>
</tr>
<tr>
<td>Cu</td>
<td>-0.13</td>
<td>0.42</td>
<td>----</td>
<td>0.06</td>
</tr>
<tr>
<td>Mo</td>
<td>0.27</td>
<td>0.11</td>
<td>0.06</td>
<td>----</td>
</tr>
</tbody>
</table>

Figure 16.2 Au and Cu assay value correlation.

The total extent of the mineralization was defined by a 0.20 g/t Au mineralization halo, bounded by sub-vertical faulting and a lower basal fault. Within the mineralization halo a core domain, based on a 0.50g/t Au grade shell was delineated, reflecting the observed silica-dominated alteration zone. For Cu, the mineralization halo was split into upper and lower domains, based on an observed split between low grade and high grade Cu assay values at 0.10% Cu.
Mineralization domains were created by computer screen digitizing of successive polylines on sections spaced twenty-five meters apart. The outlines of the polylines were defined by the selection of mineralized material with demonstrated continuity along strike and down dip. In some cases mineralization below the selected threshold was included for the purpose of maintaining continuity. Sectional polyline interpretations were digitized from drillhole to drillhole and snapped directly to assay intervals, but typically not extended more than the distance between two sections. A three-dimensional wireframe was then created by combining successive polylines into a wireframe. Wireframes were clipped above an interpreted overburden surface, and below the basal fault.

16.8 COMPOSITING

Assay sample lengths for the database range from 0.14 m to 13.11 m, with an average sample length of 1.52 m. A total of 74% of the assays had a sample interval length of 1.50 m. A compositing length of 1.50 m was therefore selected for use during estimation.

Length-weighted composites were calculated for Au within the core and low-grade mineralization shell, and for Cu, Ag and Mo within the upper and lower Cu grade domains. The compositing process started at the first point of intersection between the drillhole and the domain intersected, and halted upon exit from the domain wireframe. A small number of unsampled intervals were treated as null values. Composites that were less than 0.5 m in length were discarded so as to not introduce a short sample bias into the estimation process. The wireframes that represented the interpreted domains were also used to back-tag a rock code field into the drillhole workspace. Assays and composites were assigned a domain rock code value based on the domain wireframe that the interval midpoint fell within. The composite data were then exported to Gemcom extraction files for grade estimation.

16.9 EXPLORATORY DATA ANALYSIS

Summary composite statistics (Table 16.9) were calculated by domain for each commodity. Comparison of the data sets indicates that no significant bias was introduced from the compositing process. A comparison of the data sets also demonstrates the differences in grade distributions within the domains.

Assay sample populations drawn from the trenching data and the drillhole data were also examined by commodity. The trenching assay data show a positive bias for Au and Ag when compared to the local drillhole data. A bias of this type often occurs in trenching data, and is typically the result of weathering, preferential sampling by the geologist, over-collection of softer mineralized material during sampling, or any combination of the above. The trenching data were therefore used while defining the extent of the mineralization, but were not used for mineral resource estimation.
TABLE 16.9
SUMMARY COMPOSITE STATISTICS BY DOMAIN

<table>
<thead>
<tr>
<th>Cu Composites</th>
<th>Total</th>
<th>Lower</th>
<th>Upper</th>
<th>Mo Composites</th>
<th>Total</th>
<th>Lower</th>
<th>Upper</th>
</tr>
</thead>
<tbody>
<tr>
<td>Samples</td>
<td>39,579</td>
<td>21,494</td>
<td>18,085</td>
<td>Samples</td>
<td>39,577</td>
<td>21,494</td>
<td>18,083</td>
</tr>
<tr>
<td>Minimum %</td>
<td>0.0001</td>
<td>0.0001</td>
<td>0.0001</td>
<td>Minimum ppm</td>
<td>0.0001</td>
<td>0.0001</td>
<td>0.0001</td>
</tr>
<tr>
<td>Maximum %</td>
<td>3.4980</td>
<td>3.4980</td>
<td>0.8747</td>
<td>Maximum ppm</td>
<td>0.2743</td>
<td>0.1377</td>
<td>0.2743</td>
</tr>
<tr>
<td>Mean %</td>
<td>0.0945</td>
<td>0.1399</td>
<td>0.0405</td>
<td>Mean ppm</td>
<td>0.0085</td>
<td>0.0082</td>
<td>0.0088</td>
</tr>
<tr>
<td>St Dev</td>
<td>0.0835</td>
<td>0.0865</td>
<td>0.0314</td>
<td>St Dev</td>
<td>0.0073</td>
<td>0.0061</td>
<td>0.0085</td>
</tr>
<tr>
<td>CV</td>
<td>0.8839</td>
<td>0.6188</td>
<td>0.7765</td>
<td>CV</td>
<td>0.8666</td>
<td>0.7474</td>
<td>0.9722</td>
</tr>
<tr>
<td>Skewness</td>
<td>6.2155</td>
<td>8.7320</td>
<td>5.8413</td>
<td>Skewness</td>
<td>5.6876</td>
<td>4.2014</td>
<td>5.9827</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ag Composites</th>
<th>Total</th>
<th>Lower</th>
<th>Upper</th>
<th>Au Composites</th>
<th>Total</th>
<th>Core</th>
<th>Halo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Samples</td>
<td>39,579</td>
<td>21,494</td>
<td>18,085</td>
<td>Samples</td>
<td>39,595</td>
<td>28,256</td>
<td>11,339</td>
</tr>
<tr>
<td>Minimum g/t</td>
<td>0.2500</td>
<td>0.2500</td>
<td>0.2500</td>
<td>Minimum g/t</td>
<td>0.0025</td>
<td>0.0028</td>
<td>0.0025</td>
</tr>
<tr>
<td>Maximum g/t</td>
<td>495.7600</td>
<td>91.5430</td>
<td>495.7600</td>
<td>Maximum g/t</td>
<td>41.9668</td>
<td>41.9668</td>
<td>7.2645</td>
</tr>
<tr>
<td>Mean g/t</td>
<td>1.7248</td>
<td>1.9383</td>
<td>1.4711</td>
<td>Mean g/t</td>
<td>0.6217</td>
<td>0.7596</td>
<td>0.2778</td>
</tr>
<tr>
<td>St Dev</td>
<td>3.7462</td>
<td>1.7326</td>
<td>5.1989</td>
<td>St Dev</td>
<td>0.5951</td>
<td>0.6391</td>
<td>0.2310</td>
</tr>
<tr>
<td>CV</td>
<td>2.1720</td>
<td>0.8939</td>
<td>3.5340</td>
<td>CV</td>
<td>0.9573</td>
<td>0.8413</td>
<td>0.8313</td>
</tr>
<tr>
<td>Skewness</td>
<td>74.5323</td>
<td>20.4147</td>
<td>60.2674</td>
<td>Skewness</td>
<td>12.1872</td>
<td>13.1353</td>
<td>7.6759</td>
</tr>
</tbody>
</table>

16.10 TREATMENT OF EXTREME VALUES

The presence of high-grade outliers was evaluated by examining mean and variance cutting graphs, histograms and log-probability graphs of the domain-coded and composited grade data, in order to limit the influence of extreme values during linear grade interpolation. Threshold values were selected that minimize changes in the composite sample distribution, and composites were capped to this value prior to estimation (Table 16.10).

<table>
<thead>
<tr>
<th>Commodity</th>
<th>Capping Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Au Core</td>
<td>8.00 g/t</td>
</tr>
<tr>
<td>Au Halo</td>
<td>6.00 g/t</td>
</tr>
<tr>
<td>Cu Lower Domain</td>
<td>1.00%</td>
</tr>
<tr>
<td>Cu Upper Domain</td>
<td>1.00%</td>
</tr>
<tr>
<td>Ag Lower Domain</td>
<td>40 g/t</td>
</tr>
<tr>
<td>Ag Upper Domain</td>
<td>40 g/t</td>
</tr>
<tr>
<td>Mo Lower Domain</td>
<td>0.06%</td>
</tr>
<tr>
<td>Mo Upper Domain</td>
<td>0.09%</td>
</tr>
</tbody>
</table>

16.11 CONTINUITY ANALYSIS

Omni-directional experimental semi-variograms were modeled from uncapped composite data using a normal-scores transformation. The downhole variogram was viewed at a 1.5 m lag spacing (equivalent to the composite length) to assess the nugget variance. Nugget and
standardized spherical models were used to model the experimental semi-variograms in normal-score transformed space. Semi-variogram model ranges were then checked and iteratively refined for each model relative to the overall nugget variance. Back-transformed variance contributions were calculated for grade interpolation. Continuity ellipses based on the semi-variogram models were then generated for each variable in each domain and used to define the appropriate search ellipses (Table 16.11).

<table>
<thead>
<tr>
<th>Element</th>
<th>Domain</th>
<th>Experimental Semi-Variogram</th>
</tr>
</thead>
<tbody>
<tr>
<td>Au</td>
<td>Halo</td>
<td>0.22 + sph(0.31, 10) + sph(0.09, 30) + sph(0.33, 140)</td>
</tr>
<tr>
<td></td>
<td>Core</td>
<td>0.17 + sph(0.25, 9) + sph(0.12, 30) + sph(0.046, 300)</td>
</tr>
<tr>
<td>Cu</td>
<td>Upper</td>
<td>0.08 + sph(0.27, 10) + sph(0.13, 140) + sph(0.52, 500)</td>
</tr>
<tr>
<td></td>
<td>Lower</td>
<td>0.10 + sph(0.35, 20) + sph(0.14, 40) + sph(0.42, 525)</td>
</tr>
<tr>
<td>Ag</td>
<td>Upper</td>
<td>0.43 + sph(0.42, 15) + sph(0.60, 50) + sph(0.09, 500)</td>
</tr>
<tr>
<td></td>
<td>Lower</td>
<td>0.31 + sph(0.41, 20) + sph(0.15, 110) + sph(0.14, 595)</td>
</tr>
<tr>
<td>Mo</td>
<td>Upper</td>
<td>0.10 + sph(0.30, 10) + sph(0.11, 60) + sph(0.49, 580)</td>
</tr>
<tr>
<td></td>
<td>Lower</td>
<td>0.08 + sph(0.32, 9) + sph(0.15, 100) + sph(0.45, 560)</td>
</tr>
</tbody>
</table>

16.12 BLOCK MODEL

An orthogonal block model was established across the property (Table 16.12), consisting of separate models for estimated grades, percent, density and classification attributes and a calculated Au-equivalent ("AuEq") grade. Separate rock code models were also defined for the Au domains and the Cu domains. A percent block model was used to accurately represent the volume and tonnage that was contained within the constraining mineralization halo. As a result, the mineral resource boundary was properly represented by the percent model’s capacity to measure infinitely variable inclusion percentages.

<table>
<thead>
<tr>
<th>Origin</th>
<th>Blocks</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>423,250</td>
<td>128</td>
</tr>
<tr>
<td></td>
<td></td>
<td>25m</td>
</tr>
<tr>
<td>Y</td>
<td>6,262,550</td>
<td>146</td>
</tr>
<tr>
<td></td>
<td></td>
<td>25m</td>
</tr>
<tr>
<td>Z</td>
<td>2000</td>
<td>150</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10m</td>
</tr>
<tr>
<td>Rotation</td>
<td>None</td>
<td></td>
</tr>
</tbody>
</table>

16.13 ESTIMATION AND CLASSIFICATION

Ordinary Kriging ("OK") of capped composite values was used for the estimation of block grades. Block discretization was set at 5x5x2 to reflect the selected block size.

A three-pass series of expanding search spheres with varying minimum sample requirements were used for sample selection, estimation and classification. Composite data used during
estimation were restricted to samples located in their respective domains. Individual block grades were then used to calculate a Au-equivalent block model.

During the first pass, seven to twelve composites from three or more drillholes within a search sphere 70m in diameter were required for estimation. All blocks estimated during the first pass were classified as Measured.

During the second pass, seven to twelve composites from three or more drillholes within a search sphere 140m in diameter were required for estimation. All blocks estimated during the second pass were classified as Indicated.

During the third pass, three to twelve composites from one or more drillholes within a search sphere 280m in diameter were required for estimation. All blocks estimated during the third pass were classified as Inferred.

16.14 RHENIUM MODEL

Silver Standard assayed a sub-set of the stored pulps for rhenium. P&E did not monitor or observe the re-sampling, and all data were provided by Silver Standard. The Re assay data were composited to 1.5 m intervals, creating 7,724 records co-located with Mo and displaying a high degree of correlation with Mo (Figure 16.3).
In order to include rhenium in the mineral resource model, co-kriging of Re composite data was used based on the observed correlation between Mo and Re. Summary statistics for the Re assay and composite data indicate that the compositing process did not introduce a significant bias (Table 16.3). Experimental semi-variograms were derived for the total Mo composite data set, the co-located composite data sets for Mo and Re, and a cross-variogram for Re x Mo (Table 16.14).

<table>
<thead>
<tr>
<th>Re Assay and Composite Summary Statistics</th>
<th>Re Assays</th>
<th>Re Composites</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number</td>
<td>7,752</td>
<td>7,724</td>
</tr>
<tr>
<td>Minimum ppm</td>
<td>0.005</td>
<td>0.005</td>
</tr>
<tr>
<td>Maximum ppm</td>
<td>11.000</td>
<td>10.332</td>
</tr>
<tr>
<td>Mean ppm</td>
<td>0.534</td>
<td>0.552</td>
</tr>
<tr>
<td>St Dev</td>
<td>0.633</td>
<td>0.582</td>
</tr>
<tr>
<td>CV</td>
<td>1.184</td>
<td>1.055</td>
</tr>
</tbody>
</table>
Re block grades relative to the total uncapped Mo composite data set and the co-located uncapped Re composite data set were estimated using the Stanford University GSLIB algorithms. As a check of the validity of the model, Re block grades were compared to blocks estimated using only the co-located data sets, as well as with a Nearest Neighbor model. No significant discrepancies were noted between the Re model results.

16.15 SNOWFIELD MINERAL RESOURCE ESTIMATE

In order to ensure that the reported mineral resources meet the CIM requirement for “reasonable prospects for economic extraction” a conceptual Lerchs-Grossman optimized pit shell was developed based on all available mineral resources (Measured, Indicated and Inferred), using the economic parameters listed in Table 16.15. Commodity prices are based on the three-year tailing average as of 31 December 2010. The results from the optimized pit-shell are used solely for the purpose of reporting mineral resources that have reasonable prospects for economic extraction.

All mineral resources are reported against a 0.30 g/t Au equivalent cut-off, as constrained within the optimized pit shell (Table 16.16).
TABLE 16.16
MINERAL RESOURCE ESTIMATE AT A 0.30G/T AUEQ CUT-OFF (1)(2)(3)

<table>
<thead>
<tr>
<th>Category</th>
<th>Tonnes (millions)</th>
<th>Gold (g/t)</th>
<th>Silver (g/t)</th>
<th>Copper (%)</th>
<th>Moly (ppm)</th>
<th>Rhen (ppm)</th>
<th>Contained<sup>(3)</sup></th>
<th>Gold ('000 oz)</th>
<th>Silver ('000 oz)</th>
<th>Copper (billion lbs)</th>
<th>Moly (million lbs)</th>
<th>Rhen (million oz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measured</td>
<td>189.8</td>
<td>0.82</td>
<td>1.69</td>
<td>0.09</td>
<td>97.4</td>
<td>0.57</td>
<td>4,983</td>
<td>10,332</td>
<td>0.38</td>
<td>40.8</td>
<td>3.5</td>
<td></td>
</tr>
<tr>
<td>Indicated</td>
<td>1,180.3</td>
<td>0.55</td>
<td>1.73</td>
<td>0.10</td>
<td>83.6</td>
<td>0.50</td>
<td>20,934</td>
<td>65,444</td>
<td>2.60</td>
<td>217.5</td>
<td>19.0</td>
<td></td>
</tr>
<tr>
<td>M+I</td>
<td>1,370.1</td>
<td>0.59</td>
<td>1.72</td>
<td>0.10</td>
<td>85.5</td>
<td>0.51</td>
<td>25,917</td>
<td>75,776</td>
<td>2.98</td>
<td>258.3</td>
<td>22.5</td>
<td></td>
</tr>
<tr>
<td>Inferred<sup>(2)</sup></td>
<td>833.2</td>
<td>0.34</td>
<td>1.90</td>
<td>0.06</td>
<td>69.5</td>
<td>0.43</td>
<td>9,029</td>
<td>50,964</td>
<td>1.10</td>
<td>127.7</td>
<td>11.5</td>
<td></td>
</tr>
</tbody>
</table>

(1) Mineral resources for the February 2011 estimate are defined within a Whittle optimized pit shell that incorporates project metal recoveries, estimated operating costs and metals price assumptions. Parameters used in the estimate include metals prices and respective recoveries of US$1,025/oz. gold (71%), US$16.60/oz. silver (70%), US$3/lb. copper (70%), US$19/lb. molybdenum (60%) and rhenium US$145/oz (60%). The pit optimization utilized the following cost parameters: Mining US$1.75/tonne, Processing US$6.10/tonne and G&A US$0.90/tonne along with pit slopes of 45 degrees. Mineral resources which are not mineral reserves do not have demonstrated economic viability. The estimate of mineral resources may be materially affected by environmental, permitting, legal, marketing, or other relevant issues. The mineral resources in this news release were estimated using the Canadian Institute of Mining, Metallurgy and Petroleum (CIM), CIM Standards on Mineral Resources and Reserves, Definitions and Guidelines prepared by the CIM Standing Committee on Reserve Definitions and adopted by CIM Council.

(2) The quantity and grade of reported Inferred resources in this estimation are uncertain in nature and there has been insufficient exploration to define these Inferred resources as an Indicated or Measured mineral resource and it is uncertain if further exploration will result in upgrading them to an Indicated or Measured mineral resource category.

(3) Contained metal may differ due to rounding. “Moly” refers to molybdenum. “Rhen” refers to rhenium.

Grade and tonnage estimates within the 0.3 grams of gold equivalent per tonne optimized pit shell at a cut-off grade of 0.5 grams of gold-equivalent per tonne contain 25.2 million ounces of Measured and Indicated gold resources and 6.8 million ounces of Inferred gold resources (Table 16.17).

TABLE 16.17
GRADE & TONNAGE ESTIMATE AT A 0.50G/T AUEQ CUT-OFF WITHIN THE 0.3G/T AUEQ OPTIMIZED PIT SHELL (1)(2)(3)

<table>
<thead>
<tr>
<th>Category</th>
<th>Tonnes (millions)</th>
<th>Gold (g/t)</th>
<th>Silver (g/t)</th>
<th>Copper (%)</th>
<th>Moly (ppm)</th>
<th>Rhen (ppm)</th>
<th>Contained<sup>(3)</sup></th>
<th>Gold ('000 oz)</th>
<th>Silver ('000 oz)</th>
<th>Copper (billion lbs)</th>
<th>Moly (million lbs)</th>
<th>Rhen (million oz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measured</td>
<td>184.2</td>
<td>0.83</td>
<td>1.71</td>
<td>0.09</td>
<td>98.6</td>
<td>0.58</td>
<td>4,940</td>
<td>10,109</td>
<td>0.37</td>
<td>40.0</td>
<td>3.4</td>
<td></td>
</tr>
<tr>
<td>Indicated</td>
<td>1,087.4</td>
<td>0.58</td>
<td>1.78</td>
<td>0.11</td>
<td>86.4</td>
<td>0.50</td>
<td>20,271</td>
<td>62,049</td>
<td>2.64</td>
<td>207.1</td>
<td>17.5</td>
<td></td>
</tr>
<tr>
<td>M+I</td>
<td>1,271.6</td>
<td>0.62</td>
<td>1.77</td>
<td>0.11</td>
<td>88.2</td>
<td>0.51</td>
<td>25,211</td>
<td>72,158</td>
<td>3.01</td>
<td>247.1</td>
<td>20.9</td>
<td></td>
</tr>
<tr>
<td>Inferred<sup>(2)</sup></td>
<td>510.5</td>
<td>0.41</td>
<td>2.26</td>
<td>0.07</td>
<td>86.9</td>
<td>0.48</td>
<td>6,802</td>
<td>37,089</td>
<td>0.79</td>
<td>97.8</td>
<td>7.9</td>
<td></td>
</tr>
</tbody>
</table>

(1), (2) and (3). See footnotes to Table 16-17.

Grade and tonnage estimates within the 0.3 grams of gold equivalent per tonne optimized pit shell at a cut-off grade of 1.5 grams of gold-equivalent per tonne contain 4.4 million ounces of Measured and Indicated gold resources and 275 thousand ounces of Inferred gold resources (Table 16.18).
TABLE 16.18

GRADE & TONNAGE ESTIMATE AT A 1.50G/T AUEQ CUT-OFF WITHIN THE 0.3G/T AUEQ OPTIMIZED PIT SHELL(1)(2)(3)

<table>
<thead>
<tr>
<th>Category</th>
<th>Tonnes (millions)</th>
<th>Gold (g/t)</th>
<th>Silver (g/t)</th>
<th>Copper (%)</th>
<th>Moly (ppm)</th>
<th>Rhen (ppm)</th>
<th>Contained(3) Gold ('000 oz)</th>
<th>Silver ('000 oz)</th>
<th>Copper (billion lbs)</th>
<th>Moly(3) (million lbs)</th>
<th>Rhen(3) (million oz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measured</td>
<td>38.8</td>
<td>1.62</td>
<td>1.77</td>
<td>0.08</td>
<td>126.6</td>
<td>0.84</td>
<td>2,022</td>
<td>2,209</td>
<td>0.07</td>
<td>10.8</td>
<td>1.0</td>
</tr>
<tr>
<td>Indicated</td>
<td>65.7</td>
<td>1.14</td>
<td>2.31</td>
<td>0.20</td>
<td>86.0</td>
<td>0.55</td>
<td>2,411</td>
<td>4,887</td>
<td>0.29</td>
<td>12.5</td>
<td>1.2</td>
</tr>
<tr>
<td>M+I</td>
<td>104.5</td>
<td>1.32</td>
<td>2.11</td>
<td>0.16</td>
<td>101.1</td>
<td>0.66</td>
<td>4,433</td>
<td>7,096</td>
<td>0.36</td>
<td>23.3</td>
<td>2.2</td>
</tr>
<tr>
<td>Inferred(2)</td>
<td>7.1</td>
<td>1.21</td>
<td>5.72</td>
<td>0.29</td>
<td>50.9</td>
<td>0.51</td>
<td>275</td>
<td>1,306</td>
<td>0.05</td>
<td>0.8</td>
<td>0.1</td>
</tr>
</tbody>
</table>

(1), (2) and (3), See footnotes to Table 16-16.

VALIDATION

The block model was validated visually by the inspection of successive section lines in order to confirm that the block model correctly reflects the distribution of high-grade and low-grade samples. A validation check of the mineral resource estimate was completed by comparing average composite grades within a block to the average grade of the blocks containing the composites (Table 16.19). The observed differences in grades suggest a minimal conditional bias, and are deemed acceptable for mineral resource estimation.

An additional validation check for global bias was also completed by comparing the OK block model estimates to a Nearest Neighbor block model estimate generated using the same search criteria and tabulated at a zero cut-off (Figure 16.4). Results demonstrated a minimal global bias and slight smoothing for the OK estimate as compared to the NN estimate, and correctly duplicate grade trends.

TABLE 16.19

COMPARISON OF AVERAGE COMPOSITE GRADES AND BLOCK GRADES

<table>
<thead>
<tr>
<th>Average Block Estimate</th>
<th>Ag g/t</th>
<th>Au g/t</th>
<th>Cu %</th>
<th>Mo ppm</th>
<th>Re ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Count</td>
<td>5964</td>
<td>5964</td>
<td>5964</td>
<td>5963</td>
<td>5702</td>
</tr>
<tr>
<td>Minimum</td>
<td>0.250</td>
<td>0.045</td>
<td>0.003</td>
<td>0.000</td>
<td>0.005</td>
</tr>
<tr>
<td>Maximum</td>
<td>22.374</td>
<td>3.869</td>
<td>0.703</td>
<td>0.051</td>
<td>4.256</td>
</tr>
<tr>
<td>Average</td>
<td>1.696</td>
<td>0.615</td>
<td>0.094</td>
<td>0.008</td>
<td>0.541</td>
</tr>
<tr>
<td>St Dev</td>
<td>1.132</td>
<td>0.432</td>
<td>0.065</td>
<td>0.005</td>
<td>0.386</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Average Composite Grade</th>
<th>Ag g/t</th>
<th>Au g/t</th>
<th>Cu %</th>
<th>Mo ppm</th>
<th>Re ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Count</td>
<td>5946</td>
<td>5964</td>
<td>5946</td>
<td>5939</td>
<td>1265</td>
</tr>
<tr>
<td>Minimum</td>
<td>0.250</td>
<td>0.007</td>
<td>0.002</td>
<td>0.000</td>
<td>0.005</td>
</tr>
<tr>
<td>Maximum</td>
<td>138.508</td>
<td>8.808</td>
<td>1.301</td>
<td>0.112</td>
<td>3.383</td>
</tr>
<tr>
<td>Average</td>
<td>1.727</td>
<td>0.611</td>
<td>0.094</td>
<td>0.008</td>
<td>0.543</td>
</tr>
<tr>
<td>St Dev</td>
<td>2.457</td>
<td>0.494</td>
<td>0.075</td>
<td>0.006</td>
<td>0.422</td>
</tr>
</tbody>
</table>
Figure 16.4 Nearest Neighbor validation graphs
17.0 OTHER RELEVANT DATA AND INFORMATION

18.0 CONCLUSIONS AND RECOMMENDATIONS

18.1 CONCLUSIONS

The current, updated resources at Snowfield were derived from modeling the main Snowfield deposit on the Property and subsequently defining resources in optimized pits at 0.30 g/t AuEq cut-off, 0.5 g/t AuEq cut-off and 1.5 g/t AuEq cut-off. The resources are defined within Whittle optimized pit shells that incorporate project metal recoveries, estimated operating costs and metals price assumptions.

A positive Preliminary Economic Assessment (“PEA”) for the combined Snowfield-Brucejack Project was delivered by Wardrop Engineering in October 2010, and was based on information up to the end of 2009. The drilling completed in 2010 allowed Pretivm to redefine resources based on higher cut-off grades. The Wardrop PEA recommended continuing with a pre-feasibility study at Snowfield.

18.2 RECOMMENDATIONS

It is recommended, based on the current updated resource estimate, to undertake the following at Snowfield:

- Continue with engineering, environmental and metallurgical studies toward fulfilling the requirements for the pre-feasibility study;
- Complete approximately 10,000 metres of diamond drilling in the recently outlined high grade copper zone in the south-eastern part of the deposit with the goal of expanding the zone.

This work should be undertaken simultaneously at an approximate cost of $4 M.
19.0 REFERENCES

Ambrus, J. 1978: Chile; & International Molybdenum Encyclopaedia 1778-1978, Volume I, Resources and Production, (ed.) A. Sutulov; Intermet, Santiago, Chile, p. 54-85.

British Columbia Geological Survey, Minfile, 2008: MINFILE Detail reports on the Mitchell (104B 182), Iron Cap (104B 173), and Brucejack (104B 345).

Bushnell, S.E. 198s: Mineralization at Cananea, Sonora, Mexico, and the paragenesis and zoning of breccia pipes in quartzofeldspathic rock; Economic Geology, v. 83, p. 1760-1781.

Carson, D.J.T. and Jambor, J.L. 1974: Mineralogy, zonal relationships and economic significance of hydrothermal alteration at porphyry copper deposits, Babine Lake area, British Columbia; The Canadian Institute of Mining and Metallurgy, Bulletin, v. 76, no. 742, p. 110-133.

____1979: The occurrence and significance of phyllic overprinting at porphyry copper-molybdenum deposits (abstract); The Canadian Institute of Mining and Metallurgy, v. 72, no. 803, p. 78.

Christopher, PA. and Pinsent, R. 1982: Geology of the Ruby Creek and Boulder Creek area near Atlin (104N/11W); British Columbia Ministry of Energy, Mines and Petroleum Resources, notes to accompany Preliminary Map 52,10 p.

Fraser, R.J. 1993: The Lac Troilus gold-copper deposit, northwestern Quebec: a possible Archean porphyry system; Economic Geology, v. 88, p. 1685-1699.

Gustafson, L.B. 1978: Some major factors of porphyry copper genesis; Economic Geology, v. 73, p. 600-607.

Huang Dianhao, Wu Chengyu, and Nie Fengjun 1988: Geological features and genesis of the Jinduicheng porphyry molybdenum deposit, Shaanxi Province, China; Chinese Journal of Geochemistry, v. 7, p. 136-147.

James, A.H. 1971: Hypothetical diagrams of several porphyry copper deposits; Economic Geology, v. 66, p. 43-47.

James, L.P. 1978: The Bingham copper deposits, Utah, as an exploration target: history and pre-excavation geology; Economic Geology, v. 73, p. 1218-1227.

Johnson, C.M., Czamanske, G.K., and Lipman, P.W. 1989: Geochemistry of intrusive rocks associated with the Latir volcanic field, New Mexico, and contrasts between evolution of plutonic and volcanic rocks; Contributions to Mineralogy and Petrology, v. 103, p. 90-109.

Kesler, S.E. 1973: Copper, molybdenum and gold abundances in porphyry copper deposits; Economic Geology, v. 68, p. 106-112.

Kontak, D.J. and Clark, AH. 1988: Exploration criteria for tin and tungsten mineralization in the Cordillera Oriental of southeastern Peru; & Recent Advances in the Geology of Granite-related

McKinnon, A and Seidel, H. 1988: Tin; Register of Australian Mining, 1988189, (ed.) R. Louthean; Resource Information Unit Ltd., Subiaco, Western Australia, p. 197-204.

Moyle, J.E. 1984: Development and construction begins at East Kemptville, North America's only primary tin mine; Mining Engineering, April 1984, p. 335-336.

Muller, D. and Groves, D.I. 1993: Direct and indirect associations between potassic igneous rocks, shoshonites and gold-copper deposits; Ore Geology Reviews, v. 8, p. 383-406.

Richardson, J.M. 1988: Field and textural relationships of alteration and greisen-hosted mineralization at the East Kemptville tin deposit, Davis Lake complex, southwest Nova Scotia;

Sikka, D.G., Petruk, W., Nehru, C.E., and Zhang, Z. 1991: Geochemistry of secondary copper minerals from Proterozoic porphyry copper deposit, Malanjkhand, India; Ore Geology Reviews, v. 6, p. 257-290.

_____ 1973: The tops and bottoms of porphyry copper deposits; Economic Geology. v. 68. D. 700-815.

Sutherland Brown, A., Editor, (1976): Porphyry Deposits of the Canadian Cordillera; Canadian Institute of Mining and Metallurgy, Special Volume 15, 510 pages.

Sutulov, A. 1977: Chilean copper resources said to be world's largest American Metal Market, August 4, p. 18-19.

Thompson, T.B., Trippel, A.D., and Dwelley, P.C. 1985: Mineralized veins and breccias of the Cripple Creek district, Colorado; Economic Geology, v. 80, p. 1669-1688.

Wilson, J.C. 1978: Ore fluid-magma relationships in a vesicular quartz latite porphyry dike at Bingham, Utah; Economic Geology, v. 73, p. 1287-1307.

20.0 CERTIFICATES

CERTIFICATE of AUTHOR

TRACY J. ARMSTRONG, P.GEO.

I, Tracy J. Armstrong, P.Geo., residing at 2007 Chemin Georgeville, res. 22, Magog, QC J1X 0M8, do hereby certify that:

1. I am an independent geological consultant contracted by P&E Mining Consultants Inc;

3. I am a graduate of Queen’s University at Kingston, Ontario with a B.Sc (HONS) in Geological Sciences (1982) and have worked continuously since that time;

4. I am a geological consultant currently licensed by the Order of Geologists of Québec (License No. 566), the Association of Professional Geoscientists of Ontario (License No. 1204) and the Association of Professional Engineers and Geoscientists of British Columbia (License No. 34720);

5. I am responsible for Sections 1 through 15, 17, and co-authored Section 18, as well as the overall structuring of the Technical Report;

6. I did not visit the Snowfield Property;

7. I have had prior involvement with the Snowfield Property that is the subject of this Technical Report. My prior involvement was as co-author on several previous Technical Reports;

8. I have read the definition of "qualified person" set out in National Instrument 43-101 (NI 43-101) and certify that by reason of my education and past relevant work experience, I fulfill the requirements to be a "qualified person" for the purposes of NI 43-101. This report is based on my personal review of information provided by the Issuer and on discussions with the Issuer’s representatives. My relevant experience for the purpose of the Technical Report is:
 - Exploration geologist, Laronde Mine 1993-1995;
 - Exploration coordinator, Placer Dome 1995-1997;
 - Senior Exploration Geologist, Barrick Exploration 1997-1998;
 - Exploration Manager, McWatters Mining 1998-2003;
 - Chief Geologist Sigma Mine 2003;
 - Consulting Geologist 2003 to present.

9. I am independent of the issuer applying the test in Section 1.4 of NI 43-101;

10. I have read NI 43-101 and Form 43-101F1 and the Report has been prepared in compliance therewith;

11. As of the date of this certificate, to the best of my knowledge, information and belief, the Technical Report contains all scientific and technical information that is required to be disclosed to make the Technical Report not misleading.

Effective date: February 18, 2011

Signing date: March 4, 2011

[SIGNED and SEALED]

(Tracy Armstrong)

Tracy J. Armstrong, P.Geo.
CERTIFICATE of AUTHOR

EUGENE J. PURITCH, P.ENG.

I, Eugene J. Puritch, P. Eng., residing at 44 Turtlecreek Blvd., Brampton, Ontario, L6W 3X7, do hereby certify that:

1. I am President of P&E Mining Consultants Inc. under contract by Pretium Resources Inc. (the “Issuer”);
2. This certificate applies to the technical report titled “Technical Report and Updated Resource Estimate on the Snowfield Property, Skeena Mining Division, British Columbia, Canada” (the “Technical Report”) with an effective date of February 18, 2011;
3. I am a graduate of The Haileybury School of Mines, with a Technologist Diploma in Mining, as well as obtaining an additional year of undergraduate education in Mine Engineering at Queen’s University. In addition, I have met the Professional Engineers of Ontario Academic Requirement Committee’s Examination requirement for Bachelor’s Degree in Engineering Equivalency. I am currently licensed by the Professional Engineers of Ontario (License No. 100014010) and the Association of Professional Engineers and Geoscientists of Saskatchewan (License No. 16216) and registered with the Ontario Association of Certified Engineering Technicians and Technologists as a Senior Engineering Technologist. I am also a member of the National and Toronto CIM. I have practiced my profession continuously since 1978.

I have read the definition of “Qualified Person” as set out in National Instrument 43-101 (“NI 43-101”) and certify that, by reason of my education, affiliation with a professional association (as defined in NI 43-101) and past relevant work experience, I fulfill the requirements to be a “Qualified Person” for the purposes of NI 43-101. My summarized career experience is as follows:

- Open Pit Mine Engineer – Cassiar Asbestos/Brinco Ltd 1981-1983
- Pit Engineer/Drill & Blast Supervisor – Detour Lake Mine 1984-1986
- Self-Employed Mining Consultant/Resource-Reserve Estimator 1995-2004
- President – P & E Mining Consultants Inc. 2004-Present

During the past 21 years, I have undertaken numerous resource estimates and mine designs for deposits similar to that at the Snowfield Project. These projects have ranged from large open pit to small underground potential and existing mining operations. My involvement was specifically with the actual database management, geologic interpretation, geostatistics and grade estimation involved in resource estimation. In the mine design aspects, I was directly involved with cut-off grade determination, cost modeling, pit and stope design and development of mineable reserves via dilution and extraction calculations.

4. I have not visited the Snowfield Property;
5. I am responsible for co-authoring Section 16 of the Technical Report;
6. I am independent of the Issuer applying the test in Section 1.4 of NI 43-101;
7. I have had prior involvement with the Snowfield Property that is the subject of this Technical Report in that I co-authored several previous Technical Reports;
8. I have read NI 43-101 and Form 43-101F1 and the Technical Report has been prepared in compliance therewith;

As of the date of this certificate, to the best of my knowledge, information and belief, the Technical Report contains all scientific and technical information that is required to be disclosed to make the Technical Report not misleading.

Effective Date: February 18, 2011
Signing Date: March 4, 2011

[SIGNED and SEALED]

[Eugene Puritch]

Eugene J. Puritch, P.Eng
CERTIFICATE of AUTHOR

Fred H. Brown, MSc. (Eng), CPG, Pr. Sci. Nat.

I, Fred H Brown, of Suite B-10, 1610 Grover St., Lynden Washington, do hereby certify that:

1. I am an independent geological consultant;

2. This certificate applies to the technical report titled, “Technical Report and Updated Resource Estimate on the Snowfield Property, Skeena Mining Division, British Columbia, Canada” (the “Technical Report”) with an effective date of February 18, 2011;

3. I graduated with a Bachelor of Science degree in Geology from New Mexico State University, USA in 1987. I obtained a Graduate Diploma in Engineering (Mining) in 1997 from the University of the Witwatersrand and a Master of Science in Engineering (Civil) from the University of the Witwatersrand in 2005. I have worked as an economic geologist continuously since my graduation from university in 1987;

4. I am registered with the South African Council for Natural Scientific Professions as a Professional Geological Scientist (registration number 400008/04), the American Institute of Professional Geologists as a Certified Professional Geologist (certificate number 11015) and the Society for Mining, Metallurgy and Engineering as a Registered Member (#4152172);

5. I visited the Snowfield Project in 2009 and 2010;

6. I am responsible for the co-authoring section 16 of the Technical Report;

7. I have read the definition of “qualified person” as set out in National Instrument 43-101 (“NI 43-101”) and certify that by reason of my education and past relevant work experience, I fulfill the requirements to be a “qualified person” for the purposes of NI 43-101. I have practiced my profession continuously for over twenty years, and during this time I have been involved in the estimation of numerous mineral resources worldwide, including Canada, Peru, Mexico, South Africa and the USA. This report is based on my personal review of information provided by the Issuer and on discussions with the Issuer’s representatives;

8. I have had prior involvement with the Snowfield Property that is the subject of this Technical Report. My prior involvement was as co-author on several previous Technical Reports;

9. I am independent of the issuer applying the test in Section 1.4 of NI 43-101;

10. I have read NI 43-101 and Form 43-101F1 and the Report has been prepared in compliance therewith;

11. As of the date of this certificate, to the best of my knowledge, information and belief, the Technical Report contains all scientific and technical information that is required to be disclosed to make the Technical Report not misleading;

Effective date: February 18, 2011
Signing date: March 4, 2011

[SIGNED and SEALED]

(Fred H. Brown)

Fred H Brown CPG, Pr. Sci. Nat.