

Company Highlights

- Clinical-stage biotech focused on developing and commercializing DNA medicines to treat and protect people from HPV-related diseases, cancer, and infectious diseases
- Lead program INO-3107 for treatment of Recurrent Respiratory Papillomatosis (RRP) preparing to submit BLA, could be the first DNA medicine available in the US if approved
- Platform technology that enables the design and delivery of therapeutics and vaccines that enable the patient's body to produce their own disease fighting tools
- Deep clinical pipeline of therapeutic and vaccine candidates providing multiple near- and mid-term catalysts

INOVIO's DNA Medicines Platform

In Vivo Protein Production:

Teaching the body to make its own disease-fighting tools

DNA ENCODED MONOCLONAL ANTIBODIES

The Next Generation of DNA Medicine

DMAb technology enables in vivo production of monoclonal antibodies (mAbs)

- DNA is administered via CELLECTRA device to enable local expression of the genes coding for the antibodies in the deltoid muscle.
- DMAbs are expressed and assembled in myocytes and secreted into the blood where they can circulate in the body.

Utilization of Enhanced Delivery Technology to Develop a DMAb as a COVID-19 Medical Countermeasure

Human Clinical Data – Proof of Concept

Ongoing Phase 1 Proof-of-Concept Trial Evaluating DMAbs for COVID-19 - Interim Results

- Dose escalation study to evaluate the safety, tolerability and pharmacokinetic profile of mAb AZD5396 and mAb AZD8076 following EP delivery of optimized DMAb AZD5396 and DMAb AZD8076
- Available in preprint on Research Square
- Healthy Volunteer Study, N=44

SARS-CoV-2-DMAB01 Clinical Study Design

- Phase 1 open-label, single-center, dose escalation study focusing on safety and PK
 - Design allows for exploration of dose response;
 multiple doses & examines durability
 - Funded by DARPA, DoD
- MAbs COV2-2130 (2130) and COV2-2196 (2196), the precursors of AZ's EVUSHELD (AZD7442) were selected to be designed as DMAbs, AZD5396 and AZD8076
 - The MAbs neutralize non-overlapping epitopes on the viral spike receptor binding domain
- Recombinant human hyaluronidase (Hylenex®) is used when dose is prepared to increase plasmid transfection efficiency & plasmid administered with side-port needle & unique EP parameters

Cohort	n	Dose Each dMAb AZD5396 and AZD8076	Doses per dMAb	Dose Schedule (Day, D)	Total Dose per dMAb	Total Combined Dose dMAbs
A1	4	0.5 mg	1	D0	0.5 mg	1 mg
A2	3	1 mg	1	D0	1 mg	2 mg
В	6	0.5 mg	2	D0, D3	1 mg	2 mg
С	6	1 mg	2	D0, D3	2 mg	4 mg
D	5	0.25 mg	2	D0, D3	0.5 mg	1 mg
E	5	2 mg	2	D0, D3	4 mg	8 mg
F	5	0.5 mg	2	D0, D3	1 mg	2 mg
G	5	0.5 mg	4	D0, D3 D28, D31	2 mg	4 mg

Source: Protocol for dMAb-AZD5396 and dMAb-AZD8076. Version 6.7; IB for dMAb-AZD5396 and dMAb-AZD8076. Version 6.1

Treatment Administration is Well Tolerated

Number of Subjects with Elicited Local Reactions by Maximum Severity Grade Per Person in the First 7 Days After Last Dose

	None	Mild	Moderate	Severe	Total
Pain	2	27	15	0	44
Pruritis	40	4	0	0	44
Erythema	25	16	3	0	44
Swelling	40	3	1	0	44
Scab	4	40	0	0	44
Infection	44	0	0	0	44
Other events	32	7	5	0	44

Other Events: soreness with movement; muscle soreness; numbness at injection site (left deltoid); hematoma after the electroporation (the swelling was 3.0 cm after 30 min)

Minimal Systemic Adverse Events Reported

Elicited Adverse Events for the First 10 Days After Final Dose

	Subj ^a	Event	Mild	Moderate	Severe	Day 0	Day 3	Day 7	Day 10
Hypotension	1	1	1	0	0	0	0	1	0
Hyperhidrosis	0	0	0	0	0	0	0	0	0
Erythema (systemic)	0	0	0	0	0	0	0	0	0
Headache	3	4	4	0	0	1	2	1	0
Dizziness	0	0	0	0	0	0	0	0	0
Myalgia (pain in muscle)	4	4	2	2	0	2	1	0	1
Arthralgia (pain in joints)	1	1	1	0	0	0	0	0	1
Fever	0	0	0	0	0	0	0	0	0
Peripheral Edema	0	0	0	0	0	0	0	0	0
Other ^b	2	2	2	0	0	2	0	0	0
Total	9	12	10	2	0	5	3	2	2

^aTable columns show the total number (n) of subjects, events, number of events by severity grade, and number of events by observed visit day of reaction.

^bNausea during injection; tiredness

Ongoing Phase 1 Trial: Key Takeaways From Interim Data

- Long-lasting in vivo antibody production:
 DMAb levels remained stable for 72 weeks in all participants reaching that timepoint
- No anti-drug antibodies (ADA): no immune rejection of the DMAbs detected across ~1,000 blood samples
- Effective target binding: expressed DMAbs successfully bound to SARS-CoV-2 Spike protein receptor-binding domain, confirming functional activity through week 72
- Re-dosing at days 28 & 31 achieved DMAb levels over 1 μg/ml: Redosing appeared to be more effective at increasing DMAb concentrations compared with escalating single doses

Applicability of Platform to Rare Disease

Feasibility Shown in Multiple Disease Models

Delivery of anti PCSK-9 in mice lowers LDL Broadly neutralizing pan-influenza A & B approach PCSK-9 Influenza A & B cholesterol (Khoshnejad et al Mol Ther 2018) Delivery of multiple antibodies (Elliott et al NJV 2017) viruses • Demonstrated disease protection in pig model (McNee et al. JI 2020) **Cancer Antigens** Zaire Ebolavirus Demonstrated HER2/CD3 dBTEs can reduce tumor burden in mice · DMAb modifications and mouse model development (Perales-Puchalt et al. JCI Insight. 2019) · Pre-exposure protection against highly lethal challenge Delivery of anti PSMA in mice impacted tumor challenge in mice (Patel et al Cell Reports 2018) (Muthumani et al Cancer Immuno 2017) **Checkpoint Inhibitors** Dengue virus (DENV) **DMAb** • Protection against ADE (Flingai et al. Sci Rep Delivery of CPI in mice impacted and protected against tumor challenge (Perales-Puchalt et al. Oncotarget. 2019, Duperret et al. Cancer Res 2018) Zika virus · scFV approach Multi-drug resistant Pseudomonas Protection from disease in NHPs (Esquivel et al. Mol Ther. 2019) aeruginosa Multiple forms of DMAbs: monospecific, bispecific IgG Chikungunya virus (CHIKV) Lowering pathogen burden and complementation in antibiotic resistant model (Patel et al Nat Comm. 2017) · Rapid protection & complementarity with a vaccine (Muthumani et al., JID 2016) Lyme Disease DMAb modifications (Yang et al JID 2019)

HIV• Delivery of multiple DMAbs to

 >10ug/ml in NHPs (Wise et al JCl 2020)
 DNA encoded post translational modifications (Xu, Wise et al EbioMed

· a single animal

2018)

SARS-CoV-2 - In P1 clinical trial

 Highly potent DMAbs expressed in vivo (candidates under clinical evaluation)

Activity Demonstrated in Multiple Different Animal Models

DNA-encoded bispecific T cell activator (DBTA)

Perales-Puchalt A, et al; JCI Insight. 2019 Apr 18;4(8):e126086

Examples of Enzyme Replacement Therapy Targets for DNA Encoded Proteins (DPROT™) That Are Within Current Platform POC **Parameters**

Theraneutic

rararreters	Deficiency/		Proprietary	Protein Size	Expression	
Disease	Dysfunction of	Existing Target	Name	Criterion	Criterion	Benefit/Risk
Severe combined immune deficiency	Adenosine deaminase enzyme (ADA)	Elapegademase	<u>REVCOVI</u>	FAVORABLE	FAVORABLE	FAVORABLE
Perinatal/infantile and juvenile onset hypophosphatasia (HPP)	Tissue-nonspecific alkaline phosphatase (TNSALP) enzyme	Asfotase alfa	STRENSIQ	FAVORABLE	FAVORABLE	FAVORABLE
Wolman disease	Lysosomal acid lipase enzyme	Sebelipase alfa	<u>KANUMA</u>	FAVORABLE	FAVORABLE	FAVORABLE
Mucopolysaccharidosis (MPS)	Lysosomal enzyme/s Involved in glycosaminoglycans degradation	Vestronidase alfa (beta-glucuronidase)	MEPSEVII	FAVORABLE	FAVORABLE	FAVORABLE
Niemann-Pick disease types A and B	SMPD1 acid sphingomyelinase enzyme	Olipudase alfa	XENPOZYME	FAVORABLE	FAVORABLE	FAVORABLE
Alpha-mannosidosis	Alpha-D-mannosidase enzyme	Velmanase alfa	<u>LAMZEDE</u>	FAVORABLE	FAVORABLE	FAVORABLE
Fabry disease	α-GAL A enzyme	Pegunigalsidase alfa	<u>ELFABRIO</u>	FAVORABLE	FAVORABLE	FAVORABLE

Comparative Profiles of Investigational mAbs / Protein Replacement Platforms

Attribute	DNA	mRNA	Viral Vectored
Known integration into host cell genome	No	No	AAV: Potential LV: Yes
Tested in humans	Yes	Yes	AAV: Yes LV: No for mAbs LV: Yes gene therapy
Well tolerated	+	+/-	-
Time to peak plasma concentration	~8-12 weeks	As early as 24 hours (IV)	~1-4 weeks
Duration of expression	Over 72 weeks	~6 months	Long-term
Known anti-drug antibodies (ADA)	No	No	AAV: Yes
Risk of anti-vector antibodies developing	No	No	Yes

Abbreviations: AAV, Adeno Associated viruses; LV, lentivirus; n.a., not applicable.

Note: Characterization of attributes of each platform was based on single investigational product and indication: DNA-Mabs, SARS-CoV-2-dMAB, two doses; mRNA-MAbs, Chikungunya virus mRNA-1944, one dose; AAV-PG9 Abs (HIV) and Lentivirus Vectored-DNA-MAbs SARS-CoV-2-dMAB.

DMAb/DPROT™ Technology Has Potential as a New Treatment Paradigm in Rare Disease

- Platform has demonstrated ability for long-term protein secretion
- Safety data supports its future tolerability profile
- Highly differentiated from existing platforms
- Based on existing POC data, platform may be suitable for the treatment of many rare diseases
- Seeking development partnerships

