

Investor Presentation

Nano Dimension Ltd. – Nasdaq: NNDM

February 2022

Forward Looking Statements

This presentation of Nano Dimension Ltd. (the "Company" or "Nano Dimension") contains "forward-looking statements" within the meaning of the Private Securities Litigation Reform Act and other securities laws. Words such as "expects," "anticipates," "intends," "plans," "believes," "seeks," "estimates" and similar expressions or variations of such words are intended to identify forward-looking statements. For example, when the Company is using forward-looking statements and its preliminary financial results for the full year ended December 31st, 2021, when it discusses its vision and its mission, the potential of its cash and capital position, its products, strategic growth plan, the benefits of AME and Nano Dimension systems, the probabilities of different liabilities with respect to its balance sheet, its business plan and investment plans, that Nano Dimension has a promising outlook and poised to deliver an Industry 4.0 in AM and AME, the size of its addressable market, market growth, growth of its stock price, opportunities from machine learning and deep learning, growth which is expected to exceed S&P 500 growth, that its business value is expected to rise with investment in M&A, commercialization and R&D, and that M&A will likely yield business growth opportunities and expected estimated recurring revenue per machine per annum and recurring revenue growth. Forward-looking statements are not historical facts, and ore based upon management's current expectations, beliefs and projections, many of which, by their nature, are inherently uncertain. Such expectations, beliefs and projections are expressed in good faith. However, there can be no assurance that management's expectations, beliefs and projections will be achieved, and actual results may differ materially from what is expressed in or indicated by the forward-looking statements. Forward-looking statements are subject to risks and uncertainties that could cause actual performance or results to differ materially from those expressed in the forward-looking statements. For a more detailed description of the risks and uncertainties affecting the Company, reference is made to the Company's reports filed from time to time with the Securities and Exchange Commission ("SEC"), including, but not limited to, the risks detailed in the Company's annual report for the year ended December 31, 2020, filed with the SEC. Forward-looking statements speak only as of the date the statements are made. The Company assumes no obligation to update forward-looking statements to reflect actual results, subsequent events or circumstances, changes in assumptions or changes in other factors affecting forward-looking information except to the extent required by applicable securities laws. if the Company does update one or more forward-looking statements, no inference should be drawn that the Company will make additional updates with respect thereto or with respect to other forward-looking statements.

Table of Contents

- Introduction & Overview
- The Opportunities
- The Technology
- Solving Industry Challenges
- The Markets
- The Future

Business Model

Nano Dimension's products have high gross margins and recurring revenue* from:

Video:

Services

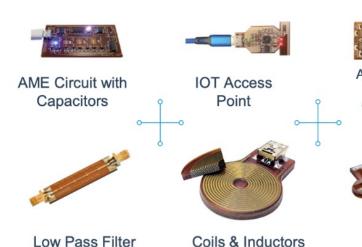
- System sales
- Consumables, i.e., materials
- Service contracts

HIGHLY FLEXIBLE CELL SOLUTIONS

Estimated
Recurring
Revenue
5-12% per
machine per
annum

Estimated
Recurring
Revenue
10% per
machine per
annum

Revolutionary outputs: Hi-PEDs®



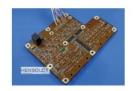
Nano Dimension's DragonFly IV and FLIGHT software produces high quality Hi-PEDs® and Complex Printed Circuit Boards (PCBs)

HIGH PERFORMANCE **ELECTRONIC DEVICES**

Fast prototyping, hours vs weeks

Printed embedded components

RF Antenna


Expand 3D scales

COMPLEX MULTILAYER PCB (50 LAYERS)

Low Pass Filter

3D MID

Filled Vias: No need for drilling

Revolutionary outputs: micro parts

- Fabrica 2.0® introduces Additive Manufacturing (AM) to the micro manufacturing process
- Harnesses semiconductor lithography alongside advanced optics to execute the most advanced 3D printing to date
- No tooling cost, minimal set-up cost, mass customize/personalize products
- Vastly expands design options and functionalities

Animal Kingdom: Pick-And-Place Assembly Solutions

Smart and Highly Flexible SMT Solutions

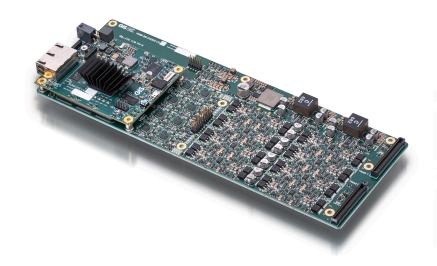
A leading developer of production equipment for electronic assembly with a core business in adaptable, smart and highly flexible SMT (**S**urface **M**ount **T**echnology) Pick-and-Place equipment, sophisticated materials dispensers as well as intelligent production materials storage and logistics systems.

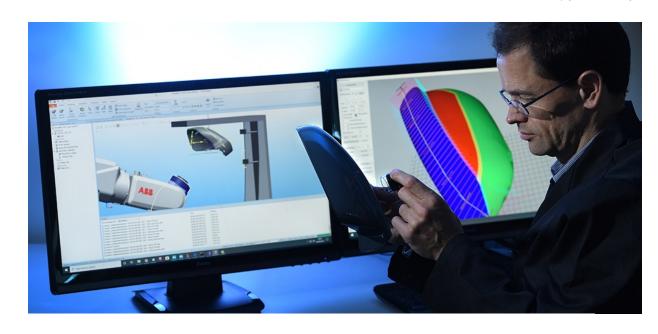
Watch Video

https://www.youtube.com/watch?v=4Y2G8vcfiSg

www.wataarthec.com

www.esembleccom


Ink Delivery Systems (IDS)

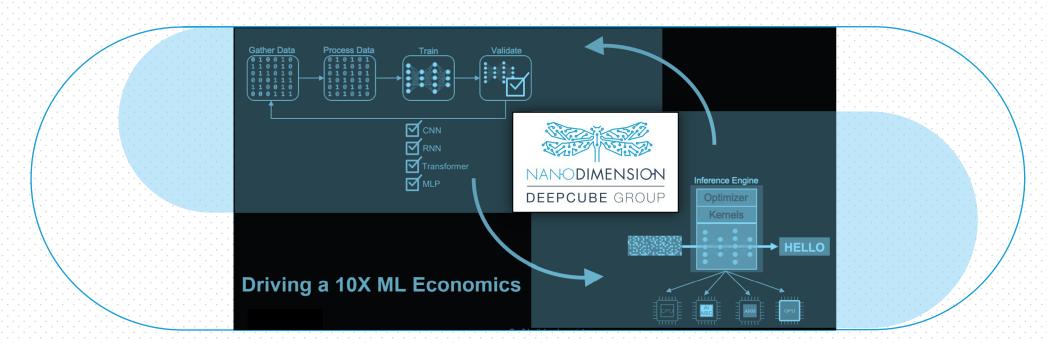

Global Inkjet Systems (GIS)

ANODIMENSION Electrifying Additive Manufacturing*

The Complete Package

GIS is the leading developer and supplier of application software, drive electronics and ink system components – supporting a wide range of industrial inkjet printheads.

Deep Learning-based Al:



Higher-yield, Self-improving, Faster, Cost Effective

Drives better performance, faster throughput and higher yield based on self-learning, self-improving, and self-correcting algorithms

Advances technology by generations and erects barriers for entry and competitive edge for competition

THE OPPORTUNITIES

- Introduction & Overview
- **02 The Opportunities**
- The Technology
- Solving Industry Challenges
- The Markets
- The Future

NANO DIMENSION - AT A GLANCE (February 2022)

FACTS

PCB Assembly Systems Sold

Balance Sheet

Approx., as of December 31st, 2021

2020

\$3.4M

Poised to deliver an **INDUSTRY 4.0**

Apr 21-**Jan 22**

Revolution in **Additive Manufacturing** ("AM") And **Electronics & Additive**

Manufacturing

("AME)

Building a strong **GLOBAL GO-TO-MARKET** Teams in USA, EMEA, APAC

Revenue

Approx., as of December 31st, 2021

Patents

Apps.

NASDAQ: NNDM I www.nano-di.com | © 2022 Nano Dimension. All rights reserved

Timeline

NANO DIMENSION TIMELINE 2014 - 2021

NANODIMENSION

 In 2014, introduced additive manufacturing to the electronics industry and listed on TASE

2014

2016/2017

 Nano Dimension listed on the Nasdaq and executed on R&D plan

 Released the DragonFly system for additively manufactured electronics and sold dozens of systems

2018/2019

2020/2021

 Presented a new strategy and raised ~\$1.5B through secondary public offerings

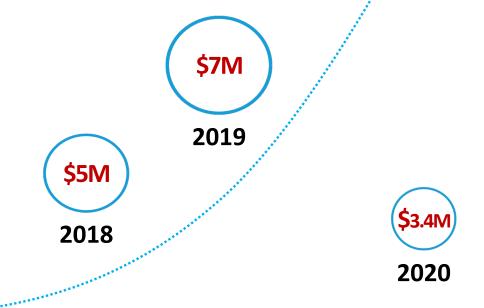
NANOFABRICA DEEPCUBE

 Nano Dimension acquired Nano Fabrica (AM precision manufacturing) and DeepCube (AI platform)

Q2 2021

Q4 2021/ Q1 2022

 Nano Dimension acquired Essemtec AG (SMT solutions) and GIS (Inkjet products and services)



NANO DIMENSION Revenue AT A GLANCE

FIGURES As of December 31st, 2021

Business Balance Sheet

Nano Dimension: Nasdaq: NNDM

Assets

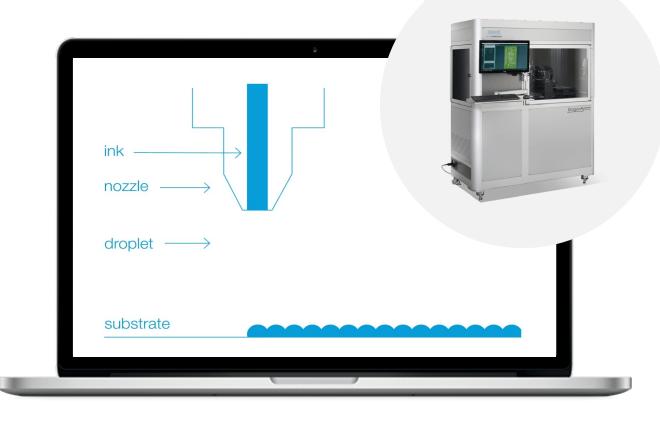
- ~\$1.355 billion of cash
- >60 Additively Manufacturing Electronics (AME) 3D-Printing Electronics Machines sold to Blue-Chip customers in 4
 continents
- 3 Breakthrough micro-AM Machines in advanced Beta Sites, including 1 to a Blue-Chip western homeland security agency
- >6000 PCB assembly related systems sold to high precision customers
- >130 inkjet systems served to high resolution focused customers
- 24 patents & 111 Patent Applications
- Vibrant R&D Team in AME, AM, PCB, and inkjet systems, all driven by AI through Deep Learning/Machine Learning
 - 4 Post PhD Scientists (Physics, Chemistry, Mathematics & Data Science)
 - 9 PhD Scientists (Physics, Chemistry, Mathematics & Data Science)
 - 23 Masters Degrees in Electronics, Mechanics, Automation & Robotics & Software
 - 23 Engineers: Electronics, Mechanics, Automation & Robotics & Software
 - 41 University BA & BSc. in similar fields
 - **19 Practical Engineers** & Technicians
 - 10 University Students/Interns
- =~130 researchers in R&D & Technical Product Support

Introduction & Overview

The Opportunities

03 The Technology

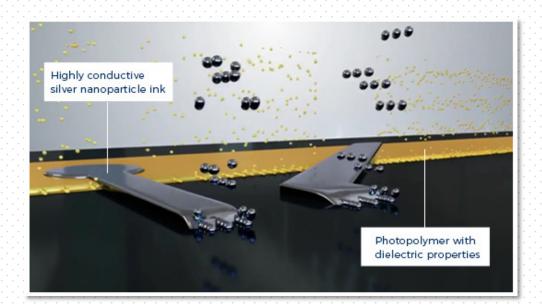
Solving Industry Challenges


The Markets

The Future

Industry-Leading, Transforming AME Tech

The DragonFly® AME System manufactures High-Performance Electronic Devices (Hi-PEDs®) through one-of-a-kind, Al-driven 3D-inkjet process.

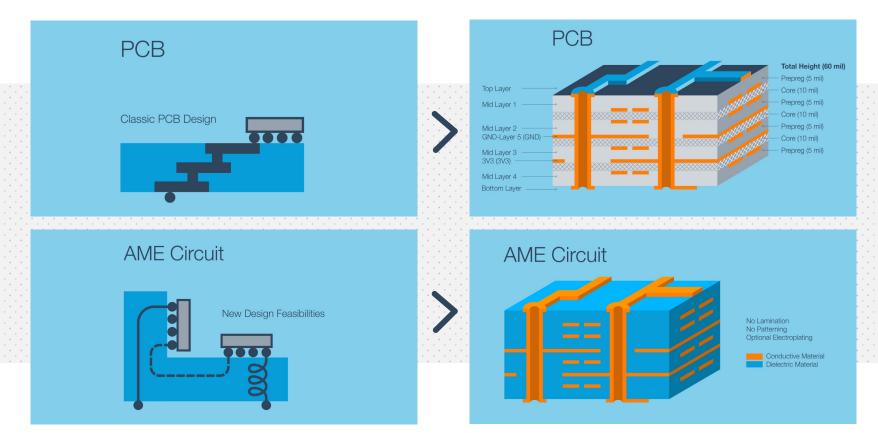


Additively Manufactured Electronics (AME) Simplifying a Complex Process

How does AME Work?

Two inkjet printheads apply both materials simultaneously

2. layer through full stack thickness



High Performance Electronic Devices

(Hi-PEDs®)

Nano Dimension's machines and processes allow for previously unprecedented geometries and complex devices, ushering in a new age of more efficient and more accessible technology - known as **High-Performance Electronic Devices** – **Hi-PEDs**®

Putting The Winning Formula Together

The electronics & additive manufacturing industry needs advanced production technologies that are digital from start to finish to meet the speed and efficiency standards of Industry 4.0.

- **Design Innovation:** Remove the geometric limitations of circuit board design, allowing components to connect three-dimensionally and in multiple layers.
- **Smart, autonomous, self-learning:** Deliver automated, autonomous, self-learning solutions that enable highly agile delivery of prototypes and small lot sizes without reliance on extended supply chains.
- **Sustainable Processes:** Eliminate toxic production waste and post-consumer 'e-waste' associated with old circuit boards.
- IP Security: Keep intellectual property (IP) safely inside prescribed parameters.

Putting The Winning Formula Together

a NANODIMENSION company

Solution: Nano Dimension Systems

We erase inefficiencies associated with traditional production methods and

we launch an entirely new generation of high-tech production

More sustainable

Demonstrably superior on key ecological, environmental, and waste metrics.

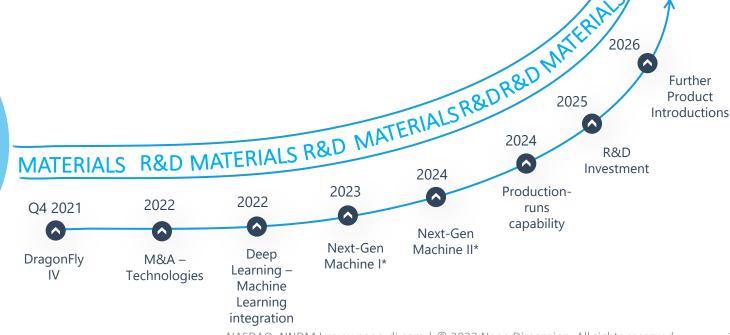
Faster

With prints performed in 24 - 48 hours, customers save not only weeks off production, but also truncate the critical ideation and iteration phases

Unparalleled security

In-house manufacturing replaces off-shore outsourcing

Investment advantage


Nano Dimension business value is expected to rise with investment in M&A, commercialization, and R&D

Nano Dimension is positioned in an ecosystem incorporating high growth opportunities

 M&A will likely yield business growth opportunities – changing the size of the business significantly with a series of transactions

• With fast product development timeline, results are expected accordingly

Based on similar high-tech growth stage companies and acknowledging the volatility of such

^{*} Code Names
** Fstimated Dates

NANO DIMENSION: Our Vision & Mission

Nano Dimension is reinventing electronics' fabrication & assembly, as well as specialized mechanical AM industries, aiming to achieve the vision of Industry 4.0

Our goals are to:

- **Transform** the electronic fabrication industries
- Create a new paradigm in electronic device innovation
- Deploy intelligent, autonomous, integrated, advanced additive manufacturing systems and processes
- Deliver environmentally responsible and economically efficient solutions for Industry 4.0
- Enable agile production from 3D digital design into functioning electronic devices
- On-demand, anytime, anywhere

While delivering a superior ROI to customers & shareholders

AI DEEP LEARNING SOFTWARE ADDITIVELY MANUFACTURED ELECTRONICS

AUTOMATED PICK AND PLACE SOLUTIONS

INKJET SYSTEMS

MICRO ADDITIVE MANUFACTURING

NANO DIMENSION

- You never change things by fighting the existing reality.
- "To change something, build a new model that makes the existing model obsolete." R. Buckminster Fuller

"People who are really serious about **software** should make their own **hardware**." Alan C. Kay

"People who are really serious about hardware for manufacturing should develop their own

Deep Learning / Machine Learning Software."

- Nano Dimension

Alan Curtis Kay was best known for his pioneering work on object-oriented programming and windowing graphical user interface (GUI) design. He was awarded the Turing Award in 2003. A Fellow of the American Academy of Arts and Sciences, the National Academy of Engineering, and the Royal Society of Arts.

NASDAQ: NNDM I www.nano-di.com | © 2022 Nano Dimension. All rights reserved.

Introduction & Overview

The Opportunities

The Technology

04 Solving Industry Challenges

The Markets

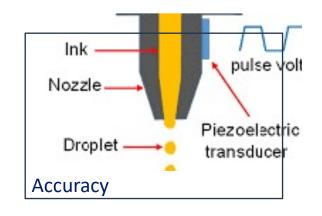
The Future

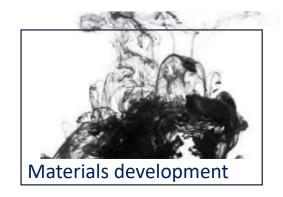
Historical Case Study Comparison

The **printing press** exponentially accelerated and expanded the individual capacity for production and, thus, spurred the culturally-momentous Industrial Revolution

However, only in **1970-2000** the **printing press** industry actually converted from **low-tech analogue mass production** to a **high-mix, lower-volume** industry, propelled by **Digital Printing Technologies**. But now, digital printing is expanding into **high-mix, high-volumes**. **PDFs are the digital inventory!**

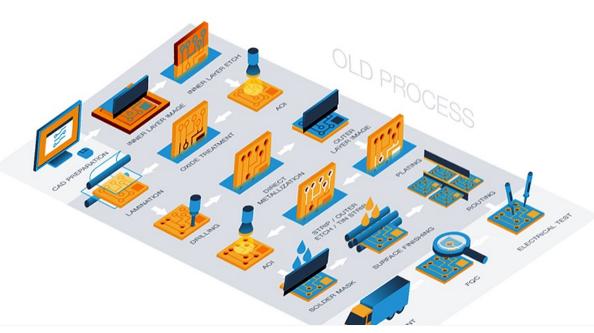
Similarly, Nano Dimension's AME 3D-Printing Technology diffuses production capacity, expedites innovation and fosters a renaissance and paradigm shift in analogue industries that are over half a century old (non-integrated circuits electronic devices & PCB)


Challenges to Additive Manufacturing (AM) adoption



Scaling AM is not trivial:

Yet, real Artificial Intelligence, i.e., Deep Machine Learning, has rarely been applied!


(due to performance limitations, cost, data inconsistency, lack of sensory data, etc.)

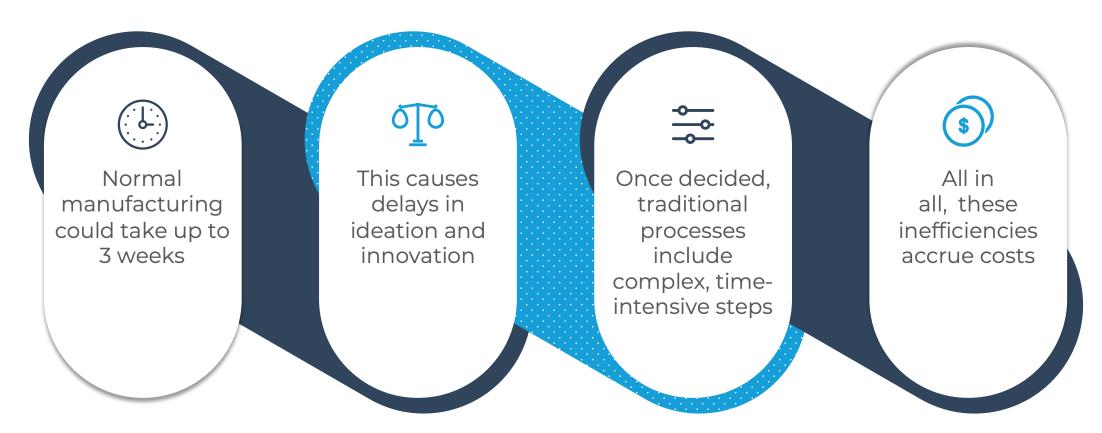
Additively Manufactured Electronics (AME) Simplifying a Complex Process

Definition of AME:

Additively Manufactured Electronics (AME) is the process of using additive manufacturing (also known as 3D printing) technology to create functional electronic circuits

Benefits of AME

AME removes many of the challenges of the intensive traditional Printed Circuit Boards (PCB) manufacturing, which is a 70+ step process, while also allowing completely new designs and classes of parts.



Current Industry Challenges PCB Manufacturing

Slow production time and high costs

Process – from initial innovation to having a product in hand – is both unnecessarily slow and high in cost.

Current industry - More Challenges: PCB manufacturing

01

Poor energy efficiency, eco-unfriendly, wasteful, unsustainable 02

Slow production time and high costs, long time to market, supply chain delays 03

Potential for IP theft

Current Industry problems PCB Manufacturing

Excessive Energy Use

Due to sprawling manufacturing process

Non-biodegradable material waste

Due to inefficient and large-scale-oriented production methods

Detrimental carbon footprint

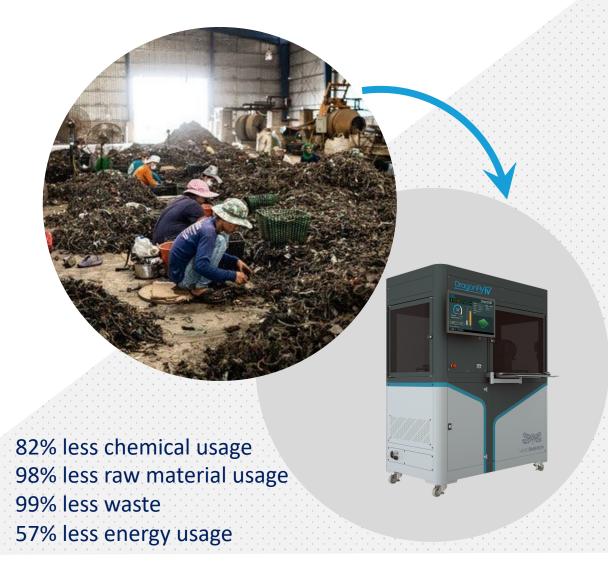
Due to poorly designed global supply chains

Current Industry Problems PCB Manufacturing

Potential for IP theft

Outsourcing manufacturing, especially in a competitive world, creates untold intellectual property (IP) concerns

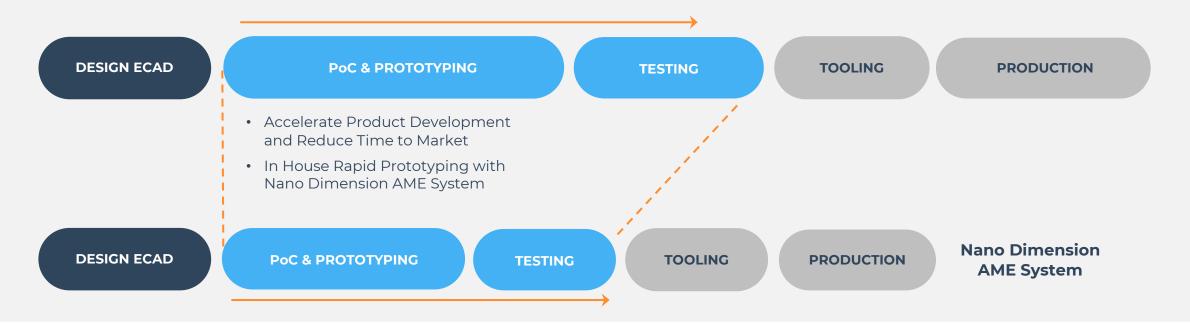
- Hardware design companies regard their PCB designs as core IP
 - Therefore, many are reluctant to send designs to the APAC region for prototyping.
- 85% of PCBs are manufactured in the APAC region
 - Potential for suboptimal products due to limited prototyping and major gaps between design and production.



Solution: More Sustainable

The DragonFly IV's in-house system:

- Combines over 70 steps into one complete process.
- Optimizes material use and drastically cuts environmental impacts.
- Uses minimal relative energy.
- Gains almost 100% savings in transportation energy and impact by avoiding global supply chain, particularly shipping.
- Improves safety and conditions of all stakeholders – turning a factory job into an office task.


Solution: Faster

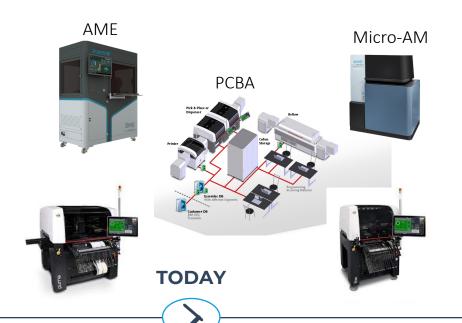
Nano Dimension systems:

- Vastly reduce overall production costs and price of error
- Decrease reliance on economies of scale

- Revolutionize R&D capabilities via rapid prototyping
- Expedite time to market
- Exponentially accelerate global innovation process

Since early 2021, a FOUR-pronged approach was planned and implemented as per Nano Dimension's vision and mission:

Growth Strategy: R & D


A multi-generation plan to help Nano Dimension AME customers realize production scale volumes.

Stage I DragonFly IV - Successfully launched in November 2021

Stage II Next-Gen Machines - Materials to fit military-specs, including multiple inks and support material; DL/ML control

Stage III Next-Next-Gen Machines - Production-run capability; higher throughput; Robotic Brains; Edge devices

Stage IV Large Chuck - Multiple print tech; highest throughput; closed-loop real-time inspection; modular-configurable

MATERIALS DEVELOPMENT

Support higher standards for Hi-mix-low-volume production

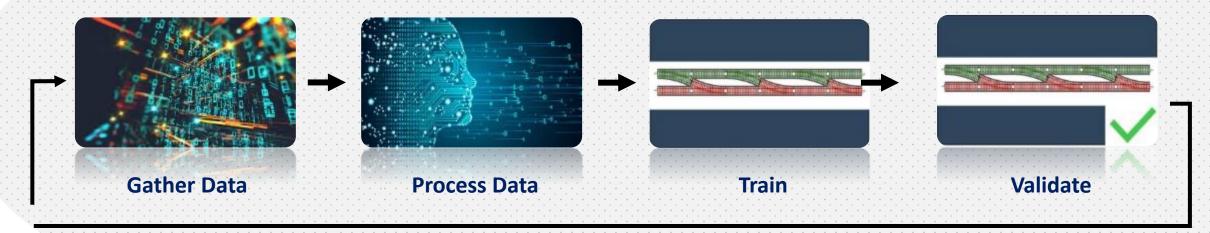
PROTOTYPING

COMMERCIAL

INDUSTRIAL

MIL-SPECS

A Strategic Acquisition - "Robotic Brain"



<u>DeepCube</u> was acquired for their <u>Deep Learning technology</u> to be applied in synergistic areas across additive manufacturing.

Acquired April 2021

Hardware agnostic, Deep Learning Software Acceleration Engine, designed based on breakthrough research for both training & inference frameworks

Growth Strategy: Go-To-Market


Human Capital Expansion

Nano Dimension is building out GTM team in order to accelerate growth strategies

Expanding team & capabilities of Sales, Marketing & Support groups in all geographic regions

including Essemtec and GIS colleagues.

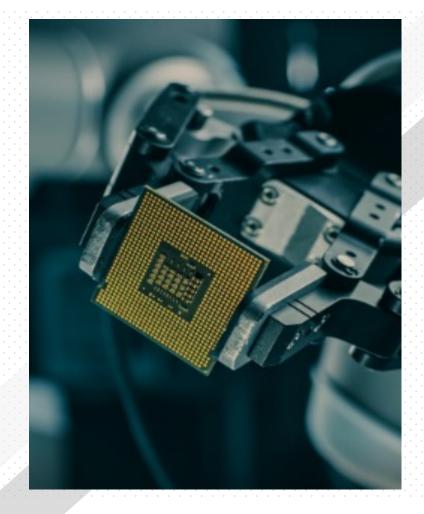
Growth Strategy: Go-To-Market

> \(\)

 Building a Commercial Division with ability to reach and service customers globally, including growing Boston & Florida based USA operations >

- Focus on commercialization of products
- Invest heavily to populate the market with
 3D AME & Micro AM Printing Systems
 ASAP, and preempt seeds of competition

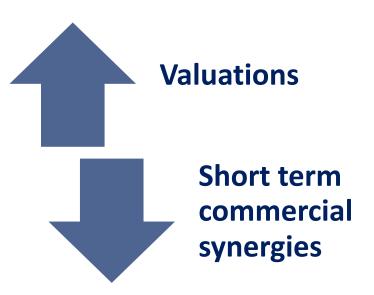
<


<

- Expansion and focus on the **United States, Europe, Australia, Asia**
 - Emphasize presence in United States and Europe through tradeshows and partnering with research institutions
 - Reinforce Asian-Pacific markets through partner organizations and on-the-ground Marketing & Sales professionals

Growth Strategy: Synergetic Mergers & Acquisitions

- In-house M&A team is driving a focused M&A strategy that seeks to help Nano Dimension to:
 - Realize customer synergies.
 - Accelerate R&D with enabling technologies.
 - Increase capabilities across the larger supply chain.
- Four acquisitions thus far include:
 - DeepCube® to enable systems to become self-improving, faster,
 and more efficient.
 - Fabrica Group to enable fabrication of micro-mechanical devices.
 - Essemtec to drive vertical integration synergies with downstream processes for electronics manufacturing.
 - Global Inkjet Systems (GIS) to drive core technological advancement and business growth.


Over 200 Target Companies Later...

In the last twelve months, over 170 target companies were studied with focus on technologies, customers, and business models.

OBSERVATIONS:

- i. Type A: **Inflated valuations** Asking prices (Type A) are regularly 10+ times EBITDA (historical average = 7-9 times EBITDA).
- ii. Type A: **Timing Misalignment** Time gap in realizing commercial synergies with DragonFly (present generation) not in a position to fully serve as production machine.
- iii. Type B/C: Somewhat high valuation resulting from public & VC/PE markets' conditions in 2020

Outcome:

These observations have led to amended synergetic M&A road map.

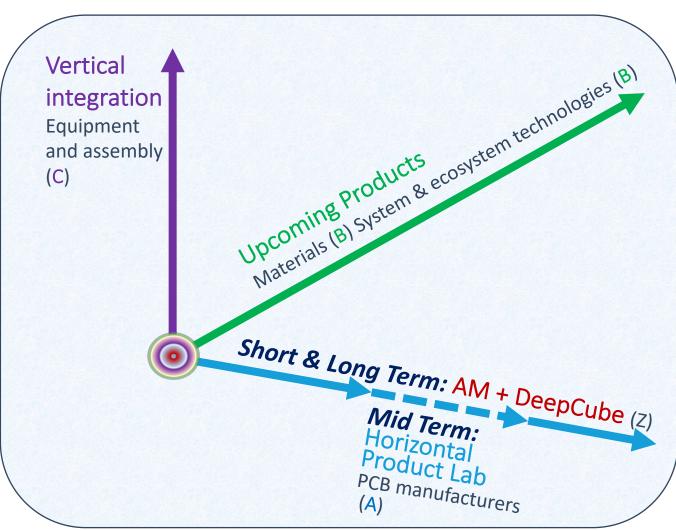
Synergetic M&A strategy

3 types of acquisitions were explored, Type Z is now added

Type A – Customer access

Connecting to our potential customers

Type B – Technologies


To advance Nano Dimension's AME 3D-printing

Type C – Capital equipment

i.e., Selling equipment for PCB & PCBA

Type Z

i.e., applying **Deep Learning** to some of **AM**'s greatest challenges, to unlock value

NANO DIMENSION'S Buy & Build

Nano Dimension is expanding its product portfolio to achieve its vision:

- DragonFly: Additively Manufactured Electronics
- Fabrica Group: Micro-AM solution for micronresolution mechanical parts and manufacturing
- Essemtec: Adaptive, highly flexible SMT equipment, micro-dispensers, and intelligent production material logistics systems
- Global Inkjet Systems:
 Leading developer and supplier of software, drive electronics and ink system components

Driven by **DeepCube Group**: Deep Learning software embedded in printers and systems for realtime self-learning and correction

Nano Dimension's AM Systems

Appeals to an expansive array of customers given its AM fabrication offerings:

DragonFly IV and FLIGHT software –
 AM Electronics Printing System

High Performance
Electronic Devices (HiPEDs®) and complex circuit
boards

2. Fabrica 2.0

Ultra Precise MicroAM Applications

Nano Dimension & Essemtec

Nano Dimension and Essemtec combine leading additive manufacturing with advanced assembly technologies to make a major leap forward in automated electronic device innovation and production.

Together, Nano Dimension & Essemtec:

- Create an intelligent, autonomous, integrated, advanced additive manufacturing and assembly process.
- Deliver a new paradigm in 3D electronic device innovation, aligned with Industry 4.0.
- Usher in new environmentally responsible practices.
- Enable agile production from 3D ECAD design software directly into functioning devices.

Watch Video

Nano Dimension & GIS

Nano Dimension and Global Inkjet Systems (GIS) present a unique combination of driving leading technological developments along with significant commercial growth upside

- Combined forces and resources will differentiate Nano Dimension's pioneering and leading-edge technology for reinventing electronics using Industry 4.0 capabilities.
- Acquisition will propel Nano Dimension's access into new market segments and applications.
- GIS will more quicky and effectively penetrate fast growing printing markets with Nano Dimension's go-to-market platform and global reach.
- GIS's inkjet technology and software are essential to our AME solutions and R&D roadmap to deliver higher resolution and higher productivity additive manufacturing.

Harnessing Deep Learning

Using DEEPCUBE®, a deep-learning-based AI platform, our systems and equipment will become automated, autonomous, self-learning solutions that enable higher throughput and greater yield.

Opportunities to leapfrog with Deep Learning / Machine Learning

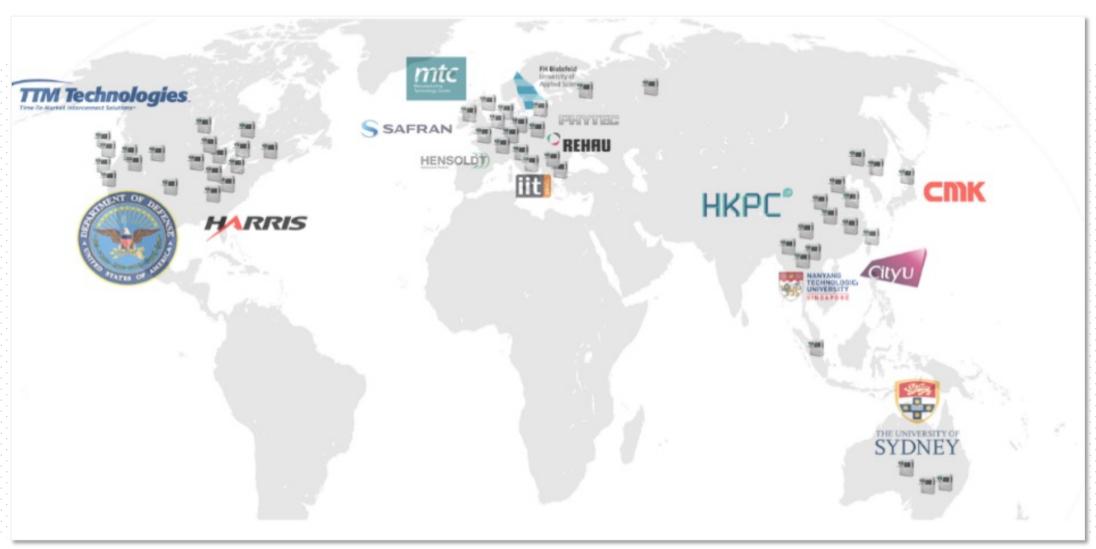
M&A **Type NG** (NewGen) will be focused on moving a current AM technology closer to production scale volumes by addressing:

Introduction & Overview

The Opportunities

The Technology

Solving Industry Challenges


05 The Markets

The Future

Market: Customers by geography

Nano Dimension's Global Operation

Nano Dimension has:

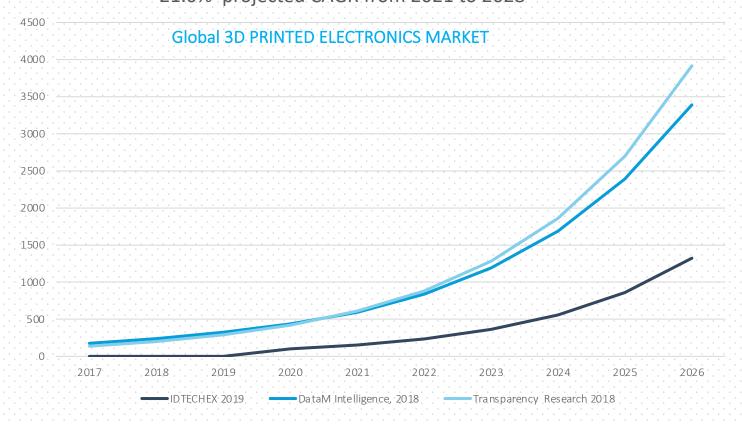
- Sold over 60 AME and Micro-AM Machines
- Built HQ in USA and sales organizations in the United States, Asia, & Europe
- Raised over \$1.47 billion cash on NASDAQ
 - With minimal debt.

- Invested over \$80 million in R&D
- Commenced synergistic M&A program
- Acquired DEEPCUBE® Group, Fabrica Group, Essemtec, and Global Inkjet Systems

Market: Nano Dimension has a promising outlook

IDTechEX (2019)

- The total market for 3D printed electronics will be worth \$2.3bn by 2029 and will be dominated by the professional PCB prototyping market segment.
- The market for professional PCB prototyping is currently growing very rapidly.


DataM Intelligence (2018)

 Analysts predict 3D printed electronics will be the next high-growth application for product innovation: 2017 3D printed electronics market size was estimated at \$176 million, expected to reach \$2.4 billion by 2025.

Transparency Market Research (2018)

 The global 3D printed electronics market was valued at US\$ 137.1 million in 2017 and was expected to expand at a CAGR of 44.46% from 2018 to 2026, reaching US\$ 3,915.0 million by the end of the forecast period.

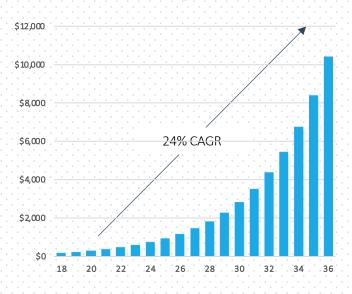
Global 3D printing (AM) Market size: \$13.78 billion in 2020 21.0% projected CAGR from 2021 to 2028

Market: Nano Dimension has a promising outlook

3D Printed Electronics market is expected to be worth \$2.4 billion by 2025

- DataM Intelligence (2018)
- 44.46% projected CAGR from 2018 to 2026
- The market for professional PCB prototyping is currently growing very rapidly, almost entirely due to market leader Nano Dimension

-IDTechEX (2019)


NANO DIMENSION: LEADING THE AM/AME REVOLUTION

Additive Manufacturing (Metal & Polymers)

Market Growth – Additive Manufacturing This chart provides revenues (in millions of dollars) for AM products and services worldwide. The lower (blue) segment of the bars represents products, while the upper (gray) segment represents services. Neither category includes secondary parts or processes, such as molded parts and castings. Source: Wohlers Associates

Additive Manufacturing of Electronics (AME)

Market Growth - Additive Manufacturing of Electronics

This chart provides revenues (in millions of dollars) for AME products and services worldwide. The projection is derived from various market studies, based on a CAGR of 24%

Market: Nano Dimension has a promising outlook

In a post-corona world, companies move to tighten supply chains and move towards in-house production

"The global supply chain right now is disrupted ... the high —tech industry is heavily reliant on China and parts of Asia" *Bloomberg*

"Industries will probably accelerate moves to localize supply chains, so they're more closely tied to final markets" *LA Times*

Data from disrupted global supply chains during the pandemic have revealed huge inefficiencies and risk in current supply chains. Many companies relying on mass assembly for proof of concept and production overseas experienced major delays in production timelines

Concerns regarding IP theft and cybersecurity create major risk for companies utilizing development in the APAC region

Bringing supply chain in-house with 3D printing of electronics cuts down on time (months → weeks) and money for proof of concept and production of electronics and microelectronics

Market: Customers by industry

Defense

- 3 multi billion-dollar U.S. Defense Manufacturers
- 2 European Defense Manufacturers
- Multiple Secret Service Agencies

Medical

Leading Medical and Biotech companies

Automotive and Industrial

Leading Automotive and Industrial companies

Aerospace

Leading Aerospace companies

Military and Government

The U.S. military

Research

 Multiple leading Tech Research Institutions around the world

Tech

Multi-billion USD valued Tech Giant

Market: Customer Testimonials

Our customers are pleased with results

"The DragonFly system enables us to achieve quick results with higher quality performance than traditional manufacturing processes."

Prof. Massimo De Vittorio CBN-IIT — Lecce — Italy

"The ability to manufacture RF systems in-house offers an exciting new means for rapid and affordable prototyping and volume manufacturing."

Dr. Arthur Paolella, Senior Scientist, Space and Intelligence Systems, Harris Corporation

"To have highdensity components quickly available with reduced effort by means of 3D printing gives us a competitive edge in the development process of such high-end electronic systems."

Thomas Müller CEO of Hensoldt

"Nano Dimension's AME technology simplified the manufacturing process, as compared to traditional manufacturing methods."

Dr. Francesco Guido, CTO Piezoskin S.R.L

"With the DragonFly we will drive forward REHAU's "Electronics into Polymers" strategy to speed up inhouse electronics development and find new installation spaces and functions for our products."

Dr. Philipp Luchscheider, REHAU Engineer behind the 3D touch sensor design

Certifications

Nano Dimension has the right certifications to get the job done

Top Quality certified

ISO 45001 certified ITAR REGISTRATION GRANTED,
CERTIFYING CLEARANCE TO WORK
IN CONJUNCTION WITH U.S.
MILITARY

In-house DragonFly system manufacturing

FCC

CE

UL

CSA

EAC

Introduction & Overview

The Opportunities

The Technology

Current Industry Challenges

The Markets

06 The Future

New: The Right Management Team

Yoav Stern CEO and Chairman

- President & CEO of DVTEL Inc., Video Software company.
- Co-Chairman, Bogen Corporation
- Executive Chairman, Kellstrom Industries Inc.
- · VP, Elron Electronic, public, high-tech investments
- New York University, MA
- TAU, B.Sc. Mathematics & Computer Science
- Practical Engineering Automation
- Air Force Academy, Graduate

Zivi Nedivi President

- CEO of Cyalume Technologies Inc., chemical-lighting solutions
- COO of Lumenis Ltd., Laser & Light energybased technologies,
- CEO of Kellstrom Industries & Aerospace, grew from \$8M to \$330M over a 5-year period
- · Air Force Academy, Graduate

- COO/CRO of DVTEL Inc., Video Software company.
- GM Security, FLIR Systems Inc.
- President & CEO of Apollo, Defense, Energy.
- · CEO of Flash Networks, Mobile Data Access Gateway,
- CEO of Bogen Communication Int'l, NJ, Germany,
- VP of Elbit Systems Ltd. (TASE & Nasdaq: ESLT), a multi-billion-§ Defense Company
- GM of Elbit Communications Division

Hanan Gino

Chief Product Officer
Head of
Strategic M&A

- 23 years at Orbotech Ltd. (Nasdaq: KLAC),
- · President of the PCB division,
- President of the flat panel display (FPD) division
- President & CEO of Verint Systems Ltd. (Nasdaq: VRNT), 1,200 employees, revenue from \$200 million to \$400 million annually.
- Technion Israel institute of Technology, Boston University
- Israeli Air Force

Yael Sandler CFO

- KPMG, 4 years tenure
- · Hebrew University of Jerusalem

Present Investment Information

01

~\$1.355 billion cash & deposits on balance sheet

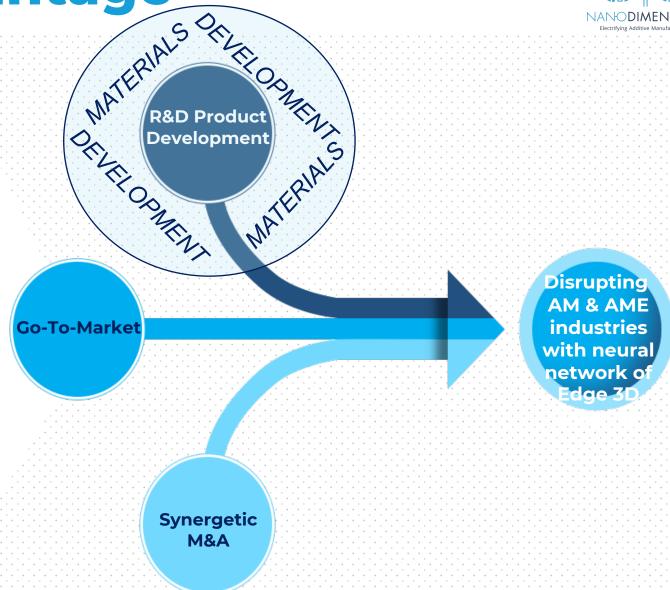
As of December 31st, 2021

02

Sustained
High
Trading
Volumes

03

~\$3.75
Per ADS
stock price
(Nasdaq: NNDM)


As of January 2022

Investment Advantage

Nano Dimension is uniquely able to:

- Drive a full-fledged business development strategy across R&D, Go-To-Market, and M&A
- Build and execute a strategy evolving toward high-mix-lowvolume production
- Combine Additive Manufacturing across product types and other manufacturing means, to disrupt the larger supply chain
- Deploy Deep Learning-based AI to continually improve processes across fabrication & manufacturing cycles

THANK YOU

@nanodimensiontech

@3Dpcb

www.nano-di.com

APPENDIX

- @nanodimensiontech
- @3Dpcb
- www.nano-di.com

Investment advantage

Why invest & become a long-term shareholder?

2

Well financed with \$1.355* billion cash & deposits

(as of December 31st, 2021)

****4/ADS stock price*** showing upside relative to cash & business plans

Steadily
Demonstrating
trading liquidity

7

Prominent institutional investors as shareholders

Over **60 DragonFly** & **Fabrica 2.0** systems sold and/or deployed globally

Revenue 2020 - \$3.5 M 2021 - ~\$10 M **BioTech** investment model with hedged downsides

Additively Manufactured Electronics

Nano Dimension achieves AME in two ways:

DragonFly IV & FLIGHT Software 3D Printing System

- Available for purchase or lease
- Easy ordering for our proprietary consumables (chemical inks)
- System training and support

NaNoS®

3D Fabrication Services

- A collaborative creation and design process
- Option to create proof of concept and produce at a low volume
- Also available through J.A.M.E.S Marketplace

Balance Sheet

Nano Dimension: Nasdaq: NNDM

Liabilities

•	Probability of not having enough cash to fulfill long term business plan	2
	 Probability to raise more capital and dilute shareholders 	2
	 Probability of not growing as a result of the above 	2
•	Probability of overpaying for acquisitions ————————————————————————————————————	3
	 Probability of failing in certain acquisition integration 	3
•	Probability of failing to engineer and build products	2
	 Probability of failing to achieve timely R&D goals 	4
•	Probability of not delivering products to market	2
	 Probability of not delivering products to market on time 	4
•	Probability of being late to market because of competition ————————————————————————————————————	-2

Probability Estimates Table:

- 1 very low
- **2** low
- 3 Medium
- 4 High
- 5 Very High